Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396647

RESUMO

Helicobacter pylori (Hp) infections pose a global health challenge demanding innovative therapeutic strategies by which to eradicate them. Urease, a key Hp virulence factor hydrolyzes urea, facilitating bacterial survival in the acidic gastric environment. In this study, a multi-methodological approach combining pharmacophore- and structure-based virtual screening, molecular dynamics simulations, and MM-GBSA calculations was employed to identify novel inhibitors for Hp urease (HpU). A refined dataset of 8,271,505 small molecules from the ZINC15 database underwent pharmacokinetic and physicochemical filtering, resulting in 16% of compounds for pharmacophore-based virtual screening. Molecular docking simulations were performed in successive stages, utilizing HTVS, SP, and XP algorithms. Subsequent energetic re-scoring with MM-GBSA identified promising candidates interacting with distinct urease variants. Lys219, a residue critical for urea catalysis at the urease binding site, can manifest in two forms, neutral (LYN) or carbamylated (KCX). Notably, the evaluated molecules demonstrated different interaction and energetic patterns in both protein variants. Further evaluation through ADMET predictions highlighted compounds with favorable pharmacological profiles, leading to the identification of 15 candidates. Molecular dynamics simulations revealed comparable structural stability to the control DJM, with candidates 5, 8 and 12 (CA5, CA8, and CA12, respectively) exhibiting the lowest binding free energies. These inhibitors suggest a chelating capacity that is crucial for urease inhibition. The analysis underscores the potential of CA5, CA8, and CA12 as novel HpU inhibitors. Finally, we compare our candidates with the chemical space of urease inhibitors finding physicochemical similarities with potent agents such as thiourea.


Assuntos
Helicobacter pylori , Helicobacter pylori/metabolismo , Urease/metabolismo , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Ureia/farmacologia
2.
Membranes (Basel) ; 13(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233530

RESUMO

The origin of life possibly required processes in confined systems that facilitated simple chemical reactions and other more complex reactions impossible to achieve under the condition of infinite dilution. In this context, the self-assembly of micelles or vesicles derived from prebiotic amphiphilic molecules is a cornerstone in the chemical evolution pathway. A prime example of these building blocks is decanoic acid, a short-chain fatty acid capable of self-assembling under ambient conditions. This study explored a simplified system made of decanoic acids under temperatures ranging from 0 °C to 110 °C to replicate prebiotic conditions. The study revealed the first point of aggregation of decanoic acid into vesicles and examined the insertion of a prebiotic-like peptide in a primitive bilayer. The information gathered from this research provides critical insights into molecule interactions with primitive membranes, allowing us to understand the first nanometric compartments needed to trigger further reactions that were essential for the origin of life.

3.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216436

RESUMO

Endoxylanases belonging to family 10 of the glycoside hydrolases (GH10) are versatile in the use of different substrates. Thus, an understanding of the molecular mechanisms underlying substrate specificities could be very useful in the engineering of GH10 endoxylanases for biotechnological purposes. Herein, we analyzed XynA, an endoxylanase that contains a (ß/α)8-barrel domain and an intrinsically disordered region (IDR) of 29 amino acids at its amino end. Enzyme activity assays revealed that the elimination of the IDR resulted in a mutant enzyme (XynAΔ29) in which two new activities emerged: the ability to release xylose from xylan, and the ability to hydrolyze p-nitrophenyl-ß-d-xylopyranoside (pNPXyl), a substrate that wild-type enzyme cannot hydrolyze. Circular dichroism and tryptophan fluorescence quenching by acrylamide showed changes in secondary structure and increased flexibility of XynAΔ29. Molecular dynamics simulations revealed that the emergence of the pNPXyl-hydrolyzing activity correlated with a dynamic behavior not previously observed in GH10 endoxylanases: a hinge-bending motion of two symmetric regions within the (ß/α)8-barrel domain, whose hinge point is the active cleft. The hinge-bending motion is more intense in XynAΔ29 than in XynA and promotes the formation of a wider active site that allows the accommodation and hydrolysis of pNPXyl. Our results open new avenues for the study of the relationship between IDRs, dynamics and activity of endoxylanases, and other enzymes containing (ß/α)8-barrel domain.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico/fisiologia , Hidrólise , Especificidade por Substrato/fisiologia , Xilanos/metabolismo , Xilose/metabolismo
4.
MethodsX ; 8: 101474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434873

RESUMO

Isothermal Titration Calorimetry (ITC) is widely employed to assess antimicrobial affinity for lipopolysaccharide (LPS); nevertheless, experiments are usually limited to commercially available-LPS chemotypes. Herein we show a method that uses Differential Scanning Calorimetry (DSC) to characterize homogeneity artificial vesicles of LPS (LPS-V) extracted from isogenic mutant bacterial strains before analyzing the antimicrobial binding by ITC. This method allows us to characterize the differences in the Polymyxin-B binding and gel to crystalline liquid (ß↔α) phase profiles of LPS-V made of LPS extracted from Escherichia coli isogenic mutant strains for the LPS biosynthesis pathway, allowing us to obtain the comparable data required for new antimicrobial discovery. A method for:•Obtaining LPS vesicles from isogenic mutant bacterial strains.•Characterize artificial LPS vesicles homogeneity.•Characterize antimicrobial binding to LPS.

5.
Heliyon ; 6(10): e05140, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33083608

RESUMO

The incorporation of non-canonical amino acids into proteins has emerged as a promising strategy to manipulate and study protein structure-function relationships with superior precision in vitro and in vivo. To date, fluorescent non-canonical amino acids (f-ncAA) have been successfully incorporated in proteins expressed in bacterial systems, Xenopus oocytes, and HEK-293T cells. Here, we describe the rational generation of a novel orthogonal aminoacyl-tRNA synthetase based on the E. coli tyrosine synthetase that is capable of encoding the f-ncAA tyr-coumarin in HEK-293T cells.

6.
Front Pharmacol ; 11: 1040, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760273

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) ion channel is a member of the family of Transient Receptor Potential (TRP) channels that acts as a molecular detector of noxious signals in primary sensory neurons. Activated by capsaicin, heat, voltage and protons, it is also well known for its desensitization, which led to the medical use of topically applied TRPV1 agonist capsaicin for its long-lasting analgesic effects. Here we report three novel small molecules, which were identified using a Structure-Based Virtual Screening for TRPV1 from the ZINC database. The three compounds were tested using electrophysiological assays, which confirmed their capsaicin-like agonist activity. von Frey filaments were used to measure the analgesic effects of the compounds applied topically on tactile allodynia induced by intra-plantar carrageenan. All compounds had anti-nociceptive activity, but two of them showed faster and longer lasting analgesic effects than capsaicin. The present results suggest that TRPV1 agonists different from capsaicin could be used to develop topical analgesics with faster onset and more potent effects.

7.
Sci Rep ; 9(1): 9965, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292456

RESUMO

The accessory ß1 subunit modulates the Ca2+- and voltage-activated K+ (BK) channel gating properties mainly by increasing its apparent Ca2+ sensitivity. ß1 plays an important role in the modulation of arterial tone and blood pressure by vascular smooth muscle cells (SMCs). 17ß-estradiol (E2) increases the BK channel open probability (Po) in SMCs, through a ß1 subunit-dependent modulatory effect. Here, using molecular modeling, bioinformatics, mutagenesis, and electrophysiology, we identify a cluster of hydrophobic residues in the second transmembrane domain of the ß1 subunit, including the residues W163 and F166, as the binding site for E2. We further show that the increase in Po induced by E2 is associated with a stabilization of the voltage sensor in its active configuration and an increase in the coupling between the voltage sensor activation and pore opening. Since ß1 is a key molecular player in vasoregulation, the findings reported here are of importance in the design of novel drugs able to modulate BK channels.


Assuntos
Estradiol/metabolismo , Ativação do Canal Iônico , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Miócitos de Músculo Liso/metabolismo , Cálcio/metabolismo , Células HEK293 , Humanos , Potenciais da Membrana , Técnicas de Patch-Clamp/métodos , Subunidades Proteicas , Receptores de Estradiol/metabolismo
8.
Biophys J ; 103(6): 1198-207, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22995492

RESUMO

Potassium channels exhibit a large diversity of single-channel conductances. Shaker is a low-conductance K-channel in which Pro475→Asp, a single-point mutation near the internal pore entrance, promotes 6- to 8-fold higher unitary current. To assess the mechanism for this higher conductance, we measured Shaker-P475D single-channel current in a wide range of symmetrical K(+) concentrations and voltages. Below 300 mM K(+), the current-to-voltage relations (i-V) showed inward rectification that disappeared at 1000 mM K(+). Single-channel conductance reached a maximum of ∼190 pS at saturating [K(+)], a value 4- to 5-fold larger than that estimated for the native channel. Intracellular Mg(2+) blocked this variant with ∼100-fold higher affinity. Near zero voltage, blockade was competitively antagonized by K(+); however, at voltages >100 mV, it was enhanced by K(+). This result is consistent with a lock-in effect in a single-file diffusion regime of Mg(2+) and K(+) along the pore. Molecular-dynamics simulations revealed higher K(+) density in the pore, especially near the Asp-475 side chains, as in the high-conductance MthK bacterial channel. The molecular dynamics also showed that K(+) ions bound distally can coexist with other K(+) or Mg(2+) in the cavity, supporting a lock-in mechanism. The maximal K(+) transport rate and higher occupancy could be due to a decrease in the electrostatic energy profile for K(+) throughout the pore, reducing the energy wells and barriers differentially by ∼0.7 and ∼2 kT, respectively.


Assuntos
Condutividade Elétrica , Magnésio/farmacologia , Mutação Puntual , Bloqueadores dos Canais de Potássio/farmacologia , Potássio/metabolismo , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Simulação de Dinâmica Molecular , Porosidade , Conformação Proteica , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética , Eletricidade Estática , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA