Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chem Biodivers ; : e202400746, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075724

RESUMO

Orthopterygium huaucui, commonly known as "Pate", is a medicinal shrub belonging to the Anacardiaceae family used locally to treat burns and stomach pains. Endemic to Peru, chemical studies on O. huaucui are limited. In this study, UHPLC/ESI/MS/MS was used to identify secondary metabolites in leaves, stems and fruits, and the antioxidant capacities of the different parts were compared. In addition, several compounds such as methyl gallate, gallic acid, kaempferol, quercetin, and quercetin 3-O-ß-glucuronide were successfully isolated from the methanolic extract of the leaves of this species for the first time. Untargeted UHPLC Q/Orbitrap/ESI/MS/MS analysis tentatively identified seventy-six compounds in the different parts of the plant, showing that this species as an interesting source of flavonoids, procyanidins and tannins. The phenolic content in leaves and stems was 334.31±4.34 and 295.18±6.38 gallic acid equivalents/100 g dry plant, respectively, while that of fruits was lower (99.92±5.45 mg/100 g). Leaves had twice the flvonoid content than fruits (210.38±3.85 versus 87.42±3.85 quercetin equivalents/100 g). DPPH) results indicated high antioxidant activity in all parts, with stems and leaves showing IC50 of 12.8 µg/mL, and fruits showing less activity (IC50 = 38.6 µg/mL). ORAC test showed higher antioxidant values in the stems (467.82±21.17 µmol Trolox equivalents/100 g).

2.
Plants (Basel) ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891330

RESUMO

Membrane technology allows the separation of active compounds, providing an alternative to conventional methods such as column chromatography, liquid-liquid extraction, and solid-liquid extraction. The nanofiltration of a Muérdago (Tristerix tetrandus Mart.) fruit juice was realized to recover valuable metabolites using three different membranes (DL, NFW, and NDX (molecular weight cut-offs (MWCOs): 150~300, 300~500, and 500~700 Da, respectively)). The metabolites were identified by ESI-MS/MS. The results showed that the target compounds were effectively fractionated according to their different molecular weights (MWs). The tested membranes showed retention percentages (RPs) of up to 100% for several phenolics. However, lower RPs appeared in the case of coumaric acid (84.51 ± 6.43% (DL), 2.64 ± 2.21% (NFW), 51.95 ± 1.23% (NDX)) and some other phenolics. The RPs observed for the phenolics cryptochlorogenic acid and chlorogenic acid were 99.74 ± 0.21 and 99.91 ± 0.01% (DL membrane), 96.85 ± 0.83 and 99.20 ± 0.05% (NFW membrane), and 92.98 ± 2.34 and 98.65 ± 0.00% (NDX membrane), respectively. The phenolic quantification was realized by UHPLC-ESI-MS/MS. The DL membrane allowed the permeation of amino acids with the MW range of about 300~100 Da (aspartic acid, proline, tryptophan). This membrane allowed the highest permeate flux (22.10-27.73 L/m2h), followed by the membranes NDX (16.44-20.82 L/m2h) and NFW (12.40-14.45 L/m2h). Moreover, the DL membrane allowed the highest recovery of total compounds in the permeate during the concentration process (19.33%), followed by the membranes NFW (16.28%) and NDX (14.02%). Permeate fractions containing phenolics and amino acids were identified in the membrane permeates DL (10 metabolites identified), NFW (13 metabolites identified), and NDX (10 metabolites identified). Particularly, tryptophan was identified only in the DL permeate fractions obtained. Leucine and isoleucine were identified only in the NFW permeate fractions, whereas methionine and arginine were identified only in the NDX ones. Liquid permeates of great interest to the food and pharmaceutical industries were obtained from plant resources and are suitable for future process optimization and scale-up.

3.
Plants (Basel) ; 13(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732429

RESUMO

Alternative solvents are being tested as green solvents to replace the traditional organic solvents used in both academy and industry. Some of these are already available, such as ethyl lactate, cyrene, limonene, glycerol, and others. This alternative explores eco-friendly processes for extracting secondary metabolites from nature, thus increasing the number of unconventional extraction methods with lower environmental impact over conventional methods. In this context, the Peruvian Ambrosia arborescens was our model while exploring a microwave-assisted extraction (MAE) approach over maceration. The objective of this study was to perform a phytochemical study including UHPLC-ESI-MS/MS and the antioxidant activity of Ambrosia arborescens, using sustainable strategies by mixing both microwaves and ethyl lactate as a green solvent. The results showed that ethyl lactate/MAE (15.07%) achieved a higher extraction yield than methanol/maceration (12.6%). In the case of the isolation of psilostachyin, it was similar to ethyl lactate (0.44%) when compared to methanol (0.40%). Regarding UHPLC-ESI-MS/MS studies, the results were similar. Twenty-eight compounds were identified in the ethyl lactate/MAE and methanol/maceration extracts, except for the tentative identification of two additional amino acids (peaks 4 and 6) in the MeOH extract. In relation to the antioxidant assay, the activity of the ethyl lactate extract was a little higher than the methanol extract in terms of ORAC (715.38 ± 3.2) and DPPH (263.04 ± 2.8). This study on A. arborescens demonstrated that the unconventional techniques, such as MAE related to ethyl lactate, could replace maceration/MeOH for the extraction and isolation of metabolites from diverse sources. This finding showed the potential of unconventional methods with green solvents to provide eco-friendly methods based on green chemistry.

4.
Eur J Mass Spectrom (Chichester) ; 30(2): 125-132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523368

RESUMO

Lichens are recognized by their unique compounds and diverse applications in food, medicines, and cosmetics. Using ultra-high pressure liquid chromatography, coupled with a high-resolution mass spectrometer, metabolomic profiling of the lichen Parmotrema perlatum, from a methanolic extract, was performed. Based on characteristic fragmentation patterns, twenty-five lichenic substances were tentatively identified including 5 depsides, 12 depsidones, 2 diphenyl ethers, 1 aromatic considered as possible artifact, 1 dibenzofuran, 1 carbohydrate, 1 organic acid, and 2 undefined compounds. To the best of our knowledge, this is a more complete report of their phytochemistry from P perlatum. Our findings of the P perlatum profile may contribute and complement the current data of the Parmotrema genus.


Assuntos
Lactonas , Líquens , Parmeliaceae , Líquens/química , Espectrometria de Massas por Ionização por Electrospray , Chile , Depsídeos , Cromatografia Líquida de Alta Pressão/métodos
5.
Nat Prod Res ; 37(1): 159-163, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34319194

RESUMO

For the first time, we report a green extraction of lichen substances assisted by high power ultrasounds from Hypotrachyna cirrhata using ethyl lactate. This sustainable alternative was comparable, both in isolation and detection of lichen substances, to methanol. In the metabolomic analysis, a total of 77 lichen substances were detected comprising depsides, depsidones, dibenzofurans, organic acids, and lipids. Although the UHPLC/ESI/MS profiles were similar, the antioxidant activity was higher for the ethyl lactate extract. Ethyl lactate can replace toxic organic solvents, such as methanol, in order to provide more sustainable green chemistry methods.


Assuntos
Líquens , Líquens/química , Metanol/química , Solventes , Antioxidantes/química , Extratos Vegetais/química
6.
Nat Prod Res ; 37(12): 2076-2082, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36008873

RESUMO

In this study, isolation and purification of lichen substances from Usnea cornuta were performed using conventional solvents, green solvents and green technologies. In addition, several lichen compounds were tentatively identified by UHPLC/ESI/MS/MS and usnic acid, diffractaic and galbinic acids were quantified as well. Limonene, ethyl lactate and methanol, were compared regarding their extraction properties and antioxidant capacities, determined by DPPH, ORAC, and FRAP assays. In the ethyl lactate, methanol and limonene extracts, 28 compounds in all, were detected for the first time by high resolution UHPLC-MS/MS fingerprinting. Untargeted metabolomics tentatively identified 14 compounds from the methanolic extract, 4 from limonene extract, and 20 metabolites from ethyl lactate extract. The green extract of ethyl lactate showed a similar antioxidant capacity to toxic methanol extract, except at ORAC assay where it was higher. Therefore, ethyl lactate can replace methanol, to provide more sustainable green chemistry methods.


Assuntos
Líquens , Usnea , Antioxidantes/química , Líquens/química , Metanol/química , Espectrometria de Massas em Tandem , Limoneno , Extratos Vegetais/química , Solventes/química , Metabolômica , Usnea/química
7.
Metabolites ; 12(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35736493

RESUMO

Himantormia lugubris is a Chilean native small lichen shrub growing in the Antarctica region. In this study, the metabolite fingerprinting and the antioxidant and enzyme inhibitory potential from this species and its four major isolated compounds were investigated for the first time. Using ultra-high performance liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry analysis (UHPLC-Q-Orbitrap-MS), several metabolites were identified including specific compounds as chemotaxonomical markers, while major metabolites were quantified in this species. A good inhibition activity against cholinesterase (acetylcholinesterase (AChE) IC50: 12.38 ± 0.09 µg/mL, butyrylcholinesterase (BChE) IC50: 31.54 ± 0.20 µg/mL) and tyrosinase (22.32 ± 0.21 µg/mL) enzymes of the alcoholic extract and the main compounds (IC50: 28.82 ± 0.10 µg/mL, 36.43 ± 0.08 µg/mL, and 7.25 ± 0.18 µg/mL, respectively, for the most active phenolic atranol) was found. The extract showed a total phenolic content of 47.4 + 0.0 mg of gallic acid equivalents/g. In addition, antioxidant activity was assessed using bleaching of DPPH and ORAC (IC50: 75.3 ± 0.02 µg/mL and 32.7 ± 0.7 µmol Trolox/g lichen, respectively) and FRAP (27.8 ± 0.0 µmol Trolox equivalent/g) experiments. The findings suggest that H. lugubris is a rich source of bioactive compounds with potentiality in the prevention of neurodegenerative or noncommunicable chronic diseases.

8.
Metabolites ; 12(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208165

RESUMO

Ovidia pillopillo (Lloime) is an endemic species of the Valdivian Forest of Chile. Little is known on the chemistry and biological activity of this plant. In this study, the phenolic profile, antioxidant capacities and enzyme inhibition capacities (against tyrosinase and cholinesterase) of the plant were investigated for the first time. The phenolic profile of the plant was obtained by UHPLC-MS fingerprinting with high resolution, which showed the presence of several flavonoids and coumarins. The antioxidant potential was measured by FRAP and ORAC (45.56 ± 1.32; 25.33 ± 1.2 µmol Trolox equivalents/g dry plant, respectively) plus ABTS and DPPH methods (IC50 = 9.95 ± 0.05 and 6.65 ± 0.5 µg/mL, respectively). Moreover, the flavonoid and phenolic contents were determined (57.33 ± 0.82 and 38.42 ± 1.32, µg of Trolox and quercetin equivalents/100 g dry weight, respectively). The ethanolic extract showed cholinesterase (IC50 = 1.94 ± 0.07 and 2.73 ± 0.05 µg/mL, for AChE and BuChE, respectively) and tyrosinase (4.92 ± 0.05 µg/mL) enzyme inhibition activities. Based on these in vitro studies, in silico simulations were performed, which determined that the major compounds as ligands likely docked in the receptors of the enzymes. These results suggest that Ovidia pillopillo produce interesting special coumarins and flavonoids, which are potential candidates for the exploration and preparation of new medicines.

9.
Metabolites ; 12(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35208230

RESUMO

Eleven species of lichens of the genus Sticta, ten of which were collected in Colombia (S. pseudosylvatica S. luteocyphellata S. cf. andina S. cf. hypoglabra, S. cordillerana, S. cf. gyalocarpa S. leucoblepharis, S. parahumboldtii S. impressula, S. ocaniensis) and one collected in Chile (S. lineariloba), were analyzed for the first time using hyphenated liquid chromatography with high-resolution mass spectrometry. In the metabolomic analysis, a total of 189 peaks were tentatively detected; the analyses were divided in five (5) groups of compounds comprising lipids, small phenolic compounds, saturated acids, terpenes, and typical phenolic lichen compounds such as depsides, depsidones and anthraquinones. The metabolome profiles of these eleven species are important since some compounds were identified as chemical markers for the fast identification of Sticta lichens for the first time. Finally, the usefulness of chemical compounds in comparison to traditional morphological traits to the study of ancestor-descendant relationships in the genus was assessed. Chemical and morphological consensus trees were not consistent with each other and recovered different relationships between taxa.

10.
Front Chem ; 8: 450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32548092

RESUMO

We report a green strategy for the extraction of lichen substances from Stereocaulon glareosum. This sustainable alternative does not use volatile toxic organic solvents, but it is assisted by microwave and is checked by UHPLC/ESI/MS/MS. Ionic liquids may provide a better alternative in the extraction of natural products from lichens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA