Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(11): 31242-31255, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36443549

RESUMO

The aims of this study were to assess Cu, Zn, and Cr pollution in a highly polluted river in Argentina (Matanza-Riachuelo) and to evaluate tolerance strategies and toxic effects in aquatic macrophytes. Chemical techniques were used to assess the bioavailability of these metals and to evaluate their uptake and translocation by plants. The ultrastructure of the roots of a free-floating plant (Eichhornia crassipes) and the leaves of an emergent macrophyte (Sagittaria montevidensis) was examined using transmission electron microscopy. In the lower basin of the river, the highest concentrations of total heavy metals were detected in water (179 µgZn/g; 54 µgCu/g; 240 µgCr/g) and sediments (1499 µgZn/g; 393 µgCu/g; 4886 µgCr/g). In the upper basin of the river, low percentages of Zn and Cu (8 to 25%) were extracted with DTPA and EDTA, probably due to the lithogenic origin of these metals. Higher extraction percentages (24 to 66%) were obtained in the lower basin, in accordance with anthropogenic pollution. For Cr, extraction percentages were low in the upper basin of the river (< 4.5%) and extremely low in the lower basin (< 0.03%). In S. montevidensis, the BCF (bioconcentration factor) and TF (translocation factor) indexes were compatible with heavy metal exclusion mechanisms in sediments, whereas in the E. crassipes, root compartmentalization could be the main tolerance strategy. The leaves of S. montevidensis showed no evidence of damage, whereas ultrastructural alterations (plasmolyzed cells, disorganized membranes) were observed in E. crassipes.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cromo/análise , Zinco , Cobre , Rios/química , Argentina , Poluentes Químicos da Água/análise , Metais Pesados/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química
2.
Int J Phytoremediation ; 20(8): 780-788, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29775103

RESUMO

Decomposition of plant debris is an important process in determining the structure and function of aquatic ecosystems. The aims were to find a mathematic model fitting the decomposition process of Schoenoplectus californicus shoots containing different Zn concentrations; compare the decomposition rates; and assess metal accumulation/mobilization during decomposition. A litterbag technique was applied with shoots containing three levels of Zn: collected from an unpolluted river (RIV) and from experimental populations at low (LoZn) and high (HiZn) Zn supply. The double exponential model explained S. californicus shoot decomposition, at first, higher initial proportion of refractory fraction in RIV detritus determined a lower decay rate and until 68 days, RIV and LoZn detritus behaved like a source of metal, releasing soluble/weakly bound zinc into the water; after 68 days, they became like a sink. However, HiZn detritus showed rapid release into the water during the first 8 days, changing to the sink condition up to 68 days, and then returning to the source condition up to 369 days. The knowledge of the role of detritus (sink/source) will allow defining a correct management of the vegetation used for zinc removal and providing a valuable tool for environmental remediation and rehabilitation planning.


Assuntos
Ecossistema , Zinco/análise , Biodegradação Ambiental , Água Doce , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA