Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(10): 6893-6901, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33748603

RESUMO

Cocos nucifera L. is a palm tree (Arecaceae) with a high economic value. The coconut husk fibers are nonedible, thick, and abrasion-resistant and correspond up to 85% of biomass discarded as solid waste residue. Therefore, the husk fibers are an underexploited byproduct with a high content of extractives of unreported nature. Two varieties of C. nucifera L. husk extracts were investigated to uncover bioactive metabolites and their possible application as a green corrosion inhibitor for carbon steel AISI 1020 under neutral pH conditions. The chemical analysis indicated 3% (w/w) of proanthocyanidins in the husk fibers with a high B-type procyanidin content. The husk fibers' crude extract showed promising results as an eco-friendly corrosion inhibitor for carbon steel AISI 1020 under neutral pH conditions. Although it formed a film on the metal surface in all tested concentrations (0.4, 0.8, 1.2, and 1.6 g L-1), the highest protective efficiency was shown at a concentration of 1.2 g L-1, determined by electrochemical techniques and mass loss. This was the first comprehensive report on coconut husk fibers' chemical composition, which was similar between the two varieties with potential for industrial application.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30821628

RESUMO

The aim of this work is to evaluate the rare earth elements (REEs) recovery from fluid catalytic cracking spent catalyst (FCC-SC) by chemical and biochemical strategies while also examining a route for the valorization of biodiesel-derived glycerin (RG), which is presently unprofitable to refine. Recovery tests for REEs were performed with no pretreatment of the FCC-SC. A chemical leaching investigation was carried out using HCl, HNO3, NaOH, CaCl2 and citric acid aqueous solutions (1 mol L-1, at 30, 50, 60 or 70 ± 1 °C). The leaching tests carried out with 1 mol L-1 citric acid at 50 °C provided the best recovery of La (27%). Subsequent bioleaching tests were carried out with four strains of Yarrowia lipolytica to evaluate their potential to produce organic acids using RG as the main carbon source. The FCC-SC contains some REEs, predominantly La. Remarkable biorecovery rates for REEs (namely, La (53%), Ce and Nd (both 99%)) were achieved using the Y. lipolytica IM-UFRJ 50678 fermented medium at 50 °C. Thus, here, a sustainable approach to recovering metals from spent cracking catalyst using RG under low-cost and non-energy-intensive processing conditions is reported.


Assuntos
Biotecnologia/métodos , Elementos da Série dos Lantanídeos/isolamento & purificação , Indústria de Petróleo e Gás , Eliminação de Resíduos/métodos , Yarrowia/metabolismo , Catálise , Ácido Cítrico/química , Glicerol/química
3.
Artigo em Inglês | MEDLINE | ID: mdl-29388890

RESUMO

This study evaluated the use of commercial rhamnolipid biosurfactant supplementation in the phytoremediation of a soil via sunflower (Helianthus annuus L.) cultivation. The soil, obtained from an industrial area, was co-contaminated with heavy metals and petroleum hydrocarbons. The remediation tests were monitored for 90 days. The best results for removal of contaminants were obtained from the tests in which the sunflower plants were cultivated in soil with 4 mg kg-1 of the rhamnolipid. Under these conditions, reductions of 58% and 48% were obtained in the total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbon (PAH) concentrations, respectively; reductions in the concentrations of the following metals were also achieved: Ni (41%), Cr (30%), Pb (29%), and Zn (20%). The PCR-DGGE analysis of soil samples collected before and after the treatments verified that the plant cultivation and biosurfactants supplementation had little effect on the structure of the dominant bacterial community in the soil. The results indicated that sunflower cultivation with the addition of a biosurfactant is a viable and efficient technology to treat soils co-contaminated with heavy metals and petroleum hydrocarbons.


Assuntos
Misturas Complexas/isolamento & purificação , Helianthus/química , Resíduos Industriais , Indústria de Petróleo e Gás , Poluentes do Solo/isolamento & purificação , Solo/química , Tensoativos/química , Biodegradação Ambiental , Misturas Complexas/química , Humanos , Hidrocarbonetos/análise , Hidrocarbonetos/isolamento & purificação , Metais Pesados/análise , Metais Pesados/isolamento & purificação , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA