Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612142

RESUMO

The growing resistance of bacteria to antibiotics is one of the main public health problems nowadays. The influence of silver nanoparticle (AgNP) pretreatment of 220 cows with mastitis on the susceptibility of Staphylococcus epidermidis bacteria to 31 antibiotics was studied. The obtained results were compared with the previous results for Escherichia coli, Streptococcus dysgalactiae, and Staphylococcus aureus. For all four bacteria, an increase in susceptibility (9.5-21.2%) to 31 antibiotics after cow treatment with AgNPs was revealed, while after first-line antibiotic drug treatment as expected, the susceptibility decreased (11.3-27.3%). These effects were explained by (1) the increase in the contribution of isolates with efflux effect after antibiotic treatments and its decrease after AgNP treatment and (2) the changes in bacteria adhesion and anti-lysozyme activity after these treatments. The effect of the increasing antibacterial activity of antibiotics after AgNP treatment was the most pronounced in the case of E. coli and was minimal in the case of S. epidermidis. With AgNP treatment, the time of recovery decreased by 26.8-48.4% compared to the time of recovery after treatment with the first-line antibiotic drugs. The AgNP treatment allows for achieving the partial restoration of the activity of antibiotics.

2.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175561

RESUMO

The increase in bacterial resistance to antibiotics is a global problem for public health. In our previous works, it was shown that the application of AgNPs in cow mastitis treatment increased S. aureus and S. dysgalactiae susceptibility to 31 antibiotics due to a decrease in the bacterial efflux effect. The aim of the present work was to shed light on whether the change in adhesive and anti-lysozyme activities caused by AgNPs also contribute to the restoration of bacterial susceptibility to antibiotics. In vivo sampling was performed before and after cow mastitis treatments with antibiotics or AgNPs. The isolates were identified, and the adhesive and anti-lysozyme activities were assessed. These data were compared with the results obtained for in vitro pre-treatment of reference bacteria with AgNPs or antibiotics. The present study revealed that bacterial treatments in vitro and in vivo with AgNPs: (1) decrease the bacterial ability to adhere to cells to start an infection and (2) decrease bacterial anti-lysozyme activity, thereby enhancing the activity of lysozyme, a natural "antibiotic" present in living organisms. The obtained data contribute to the perspective of the future application of AgNPs for recovering the activity of antibiotics rapidly disappearing from the market.


Assuntos
Mastite , Nanopartículas Metálicas , Animais , Feminino , Bovinos , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Bactérias , Mastite/microbiologia
3.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682703

RESUMO

The present work is a continuation of our translational research focusing on the use of silver nanoparticles (AgNPs) to solve the global problem of antibiotic resistance. In vivo fieldwork was done with 300 breeding farm cows with serous mastitis. Ex vivo assays revealed that after cow treatment with the antibiotic drug Spectromast LCTM, S.dysgalactiae susceptibility to 31 antibiotics dropped by 22.9%, but after treatment with Argovit-CTM AgNPs, it was raised by 13.1%. This was explained by the fact that the percentage of isolates with an efflux effect after Spectromast LC treatment resulted in an 8% increase, while Argovit-C-treatment caused a 19% decrease. The similarity of these results to our previous results on S. aureus isolates from mastitis cows treated with the antibiotic drug Lactobay and Argovit-CTM AgNPs was shown. So, mastitis treatments with Argovit-CTM AgNPs can partially return the activity of antibiotics towards S.dysgalactiae and S. aureus, while, in contrast, treatments with antibiotic drugs such as Spectromast LC and Lactobay enhance bacterial resistance to antibiotics. The results of this work strengthen the hope that in the future the use of AgNPs as efflux pump inhibitors will recover the activity of antibiotics, and thus will preserve the wide spectrum of antibiotics on the market.


Assuntos
Mastite Bovina , Nanopartículas Metálicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bovinos , Resistência a Medicamentos , Feminino , Humanos , Mastite Bovina/tratamento farmacológico , Mastite Bovina/microbiologia , Testes de Sensibilidade Microbiana , Prata/farmacologia , Prata/uso terapêutico , Staphylococcus aureus , Streptococcus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA