Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Curr Med Chem ; 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069809

RESUMO

Nanotechnology has been established as a promising alternative for treating a myriad of disease-causing microorganisms that pose threats to human health. The utilization of nanoparticles (NPs) emerges as a strategy to enhance the therapeutic arsenal against these diseases, especially given the tendency of many pathogens to develop resistance to conventional medications. Notably, titanium dioxide nanoparticles (TiO2NPs) have garnered attention for their multifaceted biomedical applications, encompassing antibacterial, antifungal, antiviral, anticancer, antioxidant, and drug delivery properties. This review focuses on the cutting-edge potential of TiO2NPs against helminths, protozoa, and vectors, underscoring their pivotal role in combating these health-threatening agents.

2.
J Trace Elem Med Biol ; 83: 127404, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364464

RESUMO

BACKGROUND: Cutaneous leishmaniasis (LC) is an infectious vector-borne disease caused by parasites belonging to the genus Leishmania. Metallic nanoparticles (MNPs) have been investigated as alternatives for the treatment of LC owing to their small size and high surface area. Here, we aimed to evaluate the effect of MNPs in the treatment of LC through experimental, in vitro and in vivo investigations. METHODS: The databases used were MEDLINE/ PubMed, Scopus, Web of Science, Embase, and Science Direct. Manual searches of the reference lists of the included studies and grey literature were also performed. English language and experimental in vitro and in vivo studies using different Leishmania species, both related to MNP treatment, were included. This study was registered in PROSPERO (CRD42021248245). RESULTS: A total of 93 articles were included. Silver nanoparticles are the most studied MNPs, and L. tropica is the most studied species. Among the mechanisms of action of MNPs in vitro, we highlight the production of reactive oxygen species, direct contact of MNPs with the biomolecules of the parasite, and release of metal ions. CONCLUSION: MNPs may be considered a promising alternative for the treatment of LC, but further studies are needed to define their efficacy and safety.


Assuntos
Leishmaniose Cutânea , Nanopartículas Metálicas , Animais , Humanos , Leishmania/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Prata/química , Prata/farmacologia
3.
Pharmaceutics ; 14(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36559136

RESUMO

Tegumentary leishmaniasis (TL) is caused by parasites of the genus Leishmania. Leishmania braziliensis (L.b) is one of the most clinically relevant pathogens that affects the skin and mucosa, causing single or multiple disfiguring and life-threatening injuries. Even so, the few treatment options for patients have significant toxicity, high dropout rates, high cost, and the emergence of resistant strains, which implies the need for studies to promote new and better treatments to combat the disease. Zinc oxide nanocrystals are microbicidal and immunomodulatory agents. Here, we develop new Ag-ZnO/xAgO nanocomposites (NCPs) with three different percentages of silver oxide (AgO) nanocrystals (x = 49%, 65%, and 68%) that could act as an option for tegumentary leishmaniasis treatment. Our findings showed that 65% and 68% of AgO inhibit the extra and intracellular replication of L.b. and present a high selectivity index. Ag-ZnO/65%AgO NCPs modulate activation, expression of surface receptors, and cytokine production by human peripheral blood mononuclear cells toward a proinflammatory phenotype. These results point to new Ag-ZnO/AgO nanocomposites as a promising option for L. braziliensis treatment.

4.
Restor Dent Endod ; 47(4): e38, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36518610

RESUMO

Objectives: This study investigated the cytotoxicity, radiopacity, pH, and dentinal tubule penetration of a paste of 1.0% calcium-doped zinc oxide nanocrystals (ZnO:1.0Ca) combined with propylene glycol (PRG) or polyethylene glycol and propylene glycol (PEG-PRG). Materials and Methods: The pastes were prepared by mixing calcium hydroxide [Ca(OH)2] or ZnO:1.0Ca with PRG or a PEG-PRG mixture. The pH was evaluated after 24 and 96 hours of storage in deionized water. Digital radiographs were acquired for radiopacity analysis and bubble counting of each material. The materials were labeled with 0.1% fluorescein and applied to root canals, and images of their dentinal tubule penetration were obtained using confocal laser scanning microscopy. RAW264.7 macrophages were placed in different dilutions of culture media previously exposed to the materials for 24 and 96 hours and tested for cell viability using the MTT assay. Analysis of variance and the Tukey test (α = 0.05) were performed. Results: ZnO:1.0Ca materials showed lower viability at 1:1 and 1:2 dilutions than Ca(OH)2 materials (p < 0.0001). Ca(OH)2 had higher pH values than ZnO:1.0Ca at 24 and 96 hours, regardless of the vehicle (p < 0.05). ZnO:1.0Ca pastes showed higher radiopacity than Ca(OH)2 pastes (p < 0.01). No between-material differences were found in bubble counting (p = 0.0902). The ZnO:1.0Ca pastes had a greater penetration depth than Ca(OH)2 in the apical third (p < 0.0001). Conclusions: ZnO:1.0Ca medicaments presented higher penetrability, cell viability, and radiopacity than Ca(OH)2. Higher values of cell viability and pH were present in Ca(OH)2 than in ZnO:1.0Ca.

5.
Nanomedicine ; 42: 102539, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35183761

RESUMO

The biological applicability of nanomaterials has been limited due to cytotoxicity. Studies have described the effects of nanomaterials on different tissues and cell types, but their actions on immune cells are less elucidated. This study describes unprecedented in vitro and in vivo antioxidant activities of cadmium selenide magic-sized quantum dots (CdSe MSQDs) with implications on rheumatoid arthritis. While the generation of ROS induced by nanomaterials is linked to cytotoxicity, we found that CdSe MSQDs reduced ROS production by neutrophils and macrophages following opsonized-zymosan stimuli, and we did not find cytotoxic effects. Interestingly, inherent antioxidant properties of CdSe MSQDs were confirmed through DPPH, FRAP, and ORAC assays. Furthermore, CdSe MSQDs reduced ROS levels generated by infiltrating leukocytes into joints in experimental model of rheumatoid arthritis. Briefly, we describe a novel application of CdSe MSQDs in modulating the inflammatory response in experimental rheumatoid arthritis through an unexpected antioxidant activity.


Assuntos
Artrite Reumatoide , Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Antioxidantes/farmacologia , Artrite Reumatoide/tratamento farmacológico , Compostos de Cádmio/química , Compostos de Cádmio/farmacologia , Humanos , Macrófagos , Neutrófilos , Pontos Quânticos/química , Espécies Reativas de Oxigênio , Compostos de Selênio/química , Compostos de Selênio/farmacologia
6.
Curr Med Chem ; 29(26): 4547-4573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35220932

RESUMO

Leishmaniasis, a cutaneous, mucocutaneous, or visceral parasitic disease caused by the protozoa of the genus Leishmania, is responsible for approximately 20-40 thousand deaths annually, with Brazil, India, and certain countries in Africa being the most affected. In addition to the parasite's ability to evade the host's immune system, the incidence of vectors, genetics of different hosts, and several deaths are attributed to the limited conventional treatments that have high toxicity, low effectiveness, and prolonged therapeutic regimens. Thus, the development of new alternative therapeutic strategies remains warranted. Metallic nanoparticles, such as gold, silver, zinc oxide, and titanium dioxide, have shown promising therapeutic tools since they are easily prepared and chemically modified, have a broad spectrum of action and low toxicity, and can generate reactive oxygen species and other immune responses. This review explores the progress of the use of metallic nanoparticles as new tools in the treatment of leishmaniasis and discusses the gaps in knowledge hindering the development of a safe and effective therapeutic intervention against these infections.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose Cutânea , Leishmaniose , Nanopartículas Metálicas , Antiprotozoários/uso terapêutico , Humanos , Leishmaniose/tratamento farmacológico , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Nanopartículas Metálicas/uso terapêutico , Prata/uso terapêutico
7.
J Biomed Mater Res B Appl Biomater ; 110(5): 1140-1150, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34928544

RESUMO

CdSe magic-sized quantum dots (MSQDs) have been widely used as fluorescent probes in biological systems due to their excellent optical properties with a broader fluorescence spectrum and stable luminescence in biological media. However, they can be cytotoxic and alter the redox balance depending on the amounts of Cd2+ adsorbed on their surface. Thus, the present study aimed to evaluate whether increases in selenium concentration in the synthesis of CdSe-MSQDs decrease the oxidative stress caused by Cd2+ -based quantum dots. CdSe-MSQDs synthesized with different concentrations of selenium were investigated against oxidative stress in the brain of chicken embryos by examining total antioxidant capacity, lipid peroxidation, thiol, and glutathione contents, as well as the activities of glutathione peroxidase, superoxide dismutase (SOD), catalase (CAT), and glutathione reductase. In addition, the vascularization of the chorioallantoic membrane (CAM) analysis was performed. Higher selenium concentrations alter the surface defect levels (decrease free Cd2+ ) and controlled the oxidative effects of CdSe-MSQDs by reducing the lipid peroxidation, restoring the glutathione defense system and the antioxidant enzymes SOD and CAT, and maintaining the vascular density of the CAM. The current findings reinforce the study of the effects of the presence of Cd2+ ions on the surface of quantum dots, changing toxicity, and aiming interesting strategies of nanomaterials in biological systems.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Selênio , Animais , Antioxidantes/farmacologia , Encéfalo/metabolismo , Cádmio/farmacologia , Compostos de Cádmio/farmacologia , Embrião de Galinha , Glutationa , Estresse Oxidativo , Selênio/farmacologia , Compostos de Selênio/farmacologia , Superóxido Dismutase
8.
Curr Med Chem ; 29(12): 2127-2141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34254904

RESUMO

Nanomaterials represent a wide alternative for the treatment of several diseases that affect both human and animal health. The use of these materials consists, mainly, in trying to solve the problem of resistance that pathogenic organisms acquire to conventional drugs. A well-studied example that represents a potential component for biomedical applications is the use of zinc oxide (ZnO) nanoparticles (NPs). Its antimicrobial function is related, especially to the ability to generate/induce ROS that affects the homeostasis of the pathogen in question. Protozoa and helminths that harm human health and the economic performance of animals have already been exposed to this type of nanoparticle. Thus, through this review, our goal is to discuss the state-of-the-art effect of ZnONPs on these parasites.


Assuntos
Anti-Helmínticos , Anti-Infecciosos , Antiprotozoários , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Antibacterianos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Humanos , Nanopartículas Metálicas/uso terapêutico , Óxido de Zinco/farmacologia
9.
Ciênc. rural (Online) ; 52(7): e20210481, 2022. tab
Artigo em Inglês | VETINDEX | ID: biblio-1350595

RESUMO

Maize white spot (MWS) caused by Pantoea ananatis is one main maize leaf diseases, and nanoparticles (NPs) are an innovative approach for bacterial disease control. This research evaluated the toxicity of pure NPs and doped NPs with different elements in inhibiting bacterial growth and to control MWS. Pure NPs and ZnO NPs doped with silver (Ag), gold (Au), copper (Cu), iron (Fe), manganese (Mn), and nickel (Ni) at different concentrations were used to determine the toxicity for P. ananatis in vitro, evaluating the bacterial growth inhibition zone. To assess the control of MWS, in the preventive application, maize plants were sprayed with NPs of ZnO:0.1Cu, ZnO:0.05Fe, ZnO:0.2Mn and ZnO:0.7Ni at 10, 5 or 2.5 mg mL-¹, and after 3 days, the plants were inoculated with bacterial suspension. To assess the curative application, plants were inoculated with the bacteria, and 3 days later sprayed with the NPs. The disease severity was assessed and the area under the disease-progress curve (AUDPC) was calculated. The doped ZnO NPs with different elements, and at different concentrations inhibited bacterial growth in vitro. NPs of ZnO:0.1Cu and ZnO:0.2Mn at 5 or 2.5 mg mL-¹, in both applications reduced the severity of MWS, showing potential for use in the disease management.


A mancha branca do milho (MBM) causada por Pantoea ananatis é uma das principais doenças foliares da cultura, e as nanopartículas (NPs) surgem como inovação no controle de doenças bacterianas. O objetivo do presente trabalho foi avaliar a toxidez de NPs puras e dopadas com diferentes elementos, na inibição do crescimento bacteriano e no controle da MBM. NPs puras e NPs de ZnO dopadas com: prata (Ag), ouro (Au), cobre (Cu), ferro (Fe), manganês (Mn), e níquel (Ni) em diferentes concentrações foram usadas para determinar a toxidez à P. ananatis, avaliando-se o halo de inibição do crescimento bacteriano. Para avaliar o controle da MBM, na aplicação preventiva, plantas de milho foram pulverizadas com NPs de ZnO:0.1Cu, ZnO:0.05Fe, ZnO:0.2Mn e ZnO:0.7Ni a 10, 5 e 2.5 mg mL-¹, e três dias depois foram inoculadas com a suspensão bacteriana. Na aplicação curativa, as plantas foram inoculadas com a suspensão bacteriana e três dias após pulverizadas com as NPs. A severidade da doença foi avaliada e calculada a área abaixo da curva de progresso da doença (AACPD). NPs de ZnO dopadas com os diferentes elementos e concentrações inibiram o crescimento bacteriano in vitro. As NPs de ZnO:0.1Cu e ZnO:0.2Mn a 5 e 2.5 mg mL-¹, nas duas aplicações reduziram a severidade da MBM, apresentando potencial de uso no manejo da doença.


Assuntos
Infecções Bacterianas/prevenção & controle , Crescimento Bacteriano/prevenção & controle , Zea mays , Pantoea/patogenicidade , Nanopartículas/toxicidade , Antibacterianos/análise
10.
Vet. Not. (Online) ; 27(3): 34-47, 1 out. 2021. graf
Artigo em Inglês | VETINDEX | ID: biblio-1502546

RESUMO

Salmonella spp. is an important causal agent of salmonellosis in humans. Controlling Salmonella spp. in eggs is important as the bacterium passes through the shell to an embryo and remains in the terrain. Disinfection is usually performed by using several sanitizers. However, novel, more efficient ways of controlling this agent have been studied with advances in nanotechnology, including nanoparticles. Preliminary studies of nanoparticles have shown they are successful in controlling such microorganisms. Standardizing the ideal concentration of this nanocomposite is fundamental for optimum efficiency in the control of Salmonella spp. In this study, eggs from commercial laying chickens were purchased from local trade and treated in laboratory with silver and zinc nanoparticles in different concentrations. Biofilm was formed 24 hours after that; then, the eggs were washed for the removal of free bacteria. Conventional microbiology was performed to isolate Salmonella spp., and PCR was performed to identify colonies. The effectiveness of using nanocomposite of silver oxide with silver-doped zinc oxide (ZnO:Ag-AgO) was evaluated in different concentrations to prevent the formation of eggshell biofilms.


As Salmonellas spp. são importantes agentes causadores de salmonelose em humanos. O controle da Salmonella spp. é importante, pois a bactéria ultrapassa a barreira da casca atingindo o embrião e infecta lotes de aves que podem levar a infecção ao ser humano. A desinfecção costuma ser feita por vários sanitizantes; porém, com os avanços da nanotecnologia, formas novas e mais eficientes de controle desse agente estão sendo estudadas, como as nanopartículas. Estudos preliminares dessas nanopartículas têm mostrado o sucesso de seu uso no controle de microrganismos. A padronização da concentração ideal de uso desse nanocomposto é fundamental para a máxima eficiência no controle de Salmonella spp. Ovos vermelhos oriundos de postura comercial foram comprados no comércio local e tratados em laboratório com as nanopartículas em diferentes concentrações; após 24 horas, formaram o biolfilme. Os ovos foram lavados para a retirada das bactérias livres. Realizaram-se exame microbiológico convencional, para isolamento de Salmonella spp., e PCR, para identificação das colônias. O objetivo deste artigo foi avaliar a eficácia da utilização de nanocompostos de óxido de prata com óxido de zinco dopado com óxido de prata (ZnO: Ag-Ago) em diferentes concentrações na prevenção da formação de biofilmes na casca dos ovos.


Assuntos
Biofilmes , Casca de Ovo/microbiologia , Compostos de Prata , Nanopartículas Metálicas , Ovos/análise , Salmonella/isolamento & purificação , Óxido de Zinco/administração & dosagem , Galinhas , Infecções por Salmonella/prevenção & controle , Nanocompostos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA