Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 10(1): 603, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162149

RESUMO

OBJECTIVE: The ubiquitous soil pathogen Rhizoctonia solani causes serious diseases in different plant species. Despite the importance of this disease, little is known regarding the molecular basis of susceptibility. SuperSAGE technology and next-generation sequencing were used to generate transcript libraries during the compatible Nicotiana tabacum-R. solani interaction. Also, we used the post-transcriptional silencing to evaluate the function of a group of important genes. RESULTS: A total of 8960 and 8221 unique Tag sequences identified as differentially up- and down-regulated were obtained. Based on gene ontology classification, several annotated UniTags corresponded to defense response, metabolism and signal transduction. Analysis of the N. tabacum transcriptome during infection identified regulatory genes implicated in a number of hormone pathways. Silencing of an mRNA induced by salicylic acid reduced the susceptibility of N. tabacum to R. solani. We provide evidence that the salicylic acid pathway was involved in disease development. This is important for further development of disease management strategies caused by this pathogen.


Assuntos
Perfilação da Expressão Gênica , Nicotiana/genética , Rhizoctonia/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Interferência de RNA , Nicotiana/microbiologia
2.
PLoS One ; 11(1): e0146223, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731660

RESUMO

Huanglongbing (HLB) constitutes the most destructive disease of citrus worldwide, yet no established efficient management measures exist for it. Brassinosteroids, a family of plant steroidal compounds, are essential for plant growth, development and stress tolerance. As a possible control strategy for HLB, epibrassinolide was applied to as a foliar spray to citrus plants infected with the causal agent of HLB, 'Candidatus Liberibacter asiaticus'. The bacterial titers were reduced after treatment with epibrassinolide under both greenhouse and field conditions but were stronger in the greenhouse. Known defense genes were induced in leaves by epibrassinolide. With the SuperSAGE technology combined with next generation sequencing, induction of genes known to be associated with defense response to bacteria and hormone transduction pathways were identified. The results demonstrate that epibrassinolide may provide a useful tool for the management of HLB.


Assuntos
Brassinosteroides/farmacologia , Citrus/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/efeitos dos fármacos , Citrus/efeitos dos fármacos , Folhas de Planta/microbiologia
3.
Funct Plant Biol ; 43(6): 534-541, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32480483

RESUMO

Many host genes induced during compatible plant-pathogen interactions constitute targets of pathogen virulence factors that act to suppress host defenses. In order to identify Nicotiana tabacum L. genes for pathogen-induced proteins involved in susceptibility to the oomycete Phytophthora parasitica var. nicotianae, we used SuperSAGE technology combined with next-generation sequencing to identify transcripts that were differentially upregulated during a compatible interaction. We identified a pathogen-induced gene (NtPIP) that was rapidly induced only during the compatible interaction. Virus-induced gene silencing of NtPIP reduced the susceptibility of N. tabacum to P. parasitica var. nicotianae. Additionally, transient expression of NtPIP in the resistant species Nicotiana megalosiphon Van Heurck & Mull. Arg. compromised the resistance to P. parasitica var. nicotianae. This pathogen-induced protein is therefore a positive regulator of the susceptibility response against an oomycete pathogen in tobacco.

4.
Mol Plant Pathol ; 11(1): 13-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20078772

RESUMO

Blue mould [Peronospora hyoscyami f. sp. tabacina (Adam) Skalicky 1964] is one of the most important foliar diseases of tobacco that causes significant losses in the Americas, south-eastern Europe and the Middle East. This review summarizes the current knowledge of the mechanisms employed by this oomycete pathogen to colonize its host, with emphasis on molecular aspects of pathogenicity. In addition, key biochemical and molecular mechanisms involved in tobacco resistance to blue mould are discussed. TAXONOMY: Kingdom: Chromista (Straminipila); Phylum: Heterokontophyta; Class: Oomycete; Order: Peronosporales; Family: Peronosporaceae; Genus: Peronospora; Species: Peronospora hyoscyami f. sp. tabacina. DISEASE SYMPTOMS: The pathogen typically causes localized lesions on tobacco leaves that appear as single, or groups of, yellow spots that often coalesce to form light-brown necrotic areas. Some of the leaves exhibit grey to bluish downy mould on their lower surfaces. Diseased leaves can become twisted, such that the lower surfaces turn upwards. In such cases, the bluish colour of the diseased plants becomes quite conspicuous, especially under moist conditions when sporulation is abundant. Hence the name of the disease: tobacco blue mould. INFECTION PROCESS: The pathogen develops haustoria within plant cells that are thought to establish the transfer of nutrients from the host cell, and may also act in the delivery of effector proteins during infection. RESISTANCE: Several defence responses have been reported to occur in the Nicotiana tabacum-P. hyoscyami f. sp. tabacina interaction. These include the induction of pathogenesis-related genes, and a correlated increase in the activities of typical pathogenesis-related proteins, such as peroxidases, chitinases, beta-1,3-glucanases and lipoxygenases. Systemic acquired resistance is one of the best characterized tobacco defence responses activated on pathogen infection.


Assuntos
Nicotiana/parasitologia , Peronospora/patogenicidade , Doenças das Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Nicotiana/imunologia
5.
J Bacteriol ; 185(24): 7231-40, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645284

RESUMO

The main virulence factor of Vibrio cholerae, the cholera toxin, is encoded by the ctxAB operon, which is contained in the genome of the lysogenic filamentous phage CTX phi. This phage transmits ctxAB genes between V. cholerae bacterial populations that express toxin-coregulated pilus (TCP), the CTX phi receptor. In investigating new forms of ctxAB transmission, we found that V. cholerae filamentous phage VGJ phi, which uses the mannose-sensitive hemagglutinin (MSHA) pilus as a receptor, transmits CTX phi or its satellite phage RS1 by an efficient and highly specific TCP-independent mechanism. This is a novel type of specialized transduction consisting in the site-specific cointegration of VGJ phi and CTX phi (or RS1) replicative forms to produce a single hybrid molecule, which generates a single-stranded DNA hybrid genome that is packaged into hybrid viral particles designated HybP phi (for the VGJ phi/CTX phi hybrid) and HybRS phi (for the VGJ phi/RS1 hybrid). The hybrid phages replicate by using the VGJ phi replicating functions and use the VGJ phi capsid, retaining the ability to infect via MSHA. The hybrid phages infect most tested strains more efficiently than CTX phi, even under in vitro optimal conditions for TCP expression. Infection and lysogenization with HybP phi revert the V. cholerae live attenuated vaccine strain 1333 to virulence. Our results reinforce that TCP is not indispensable for the acquisition of CTX phi. Thus, we discuss an alternative to the current accepted evolutionary model for the emergence of new toxigenic strains of V. cholerae and the importance of our findings for the development of an environmentally safer live attenuated cholera vaccine.


Assuntos
Bacteriófagos/genética , Toxina da Cólera/genética , Transdução Genética , Vibrio cholerae/genética , Vibrio cholerae/virologia , Vacinas contra Cólera , Regulação Viral da Expressão Gênica , Transferência Genética Horizontal , Lisogenia , Plasmídeos/genética , Vibrio cholerae/patogenicidade , Virulência
6.
J Bacteriol ; 185(19): 5685-96, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-13129939

RESUMO

We describe a novel filamentous phage, designated VGJ phi, isolated from strain SG25-1 of Vibrio cholerae O139, which infects all O1 (classical and El Tor) and O139 strains tested. The sequence of the 7,542 nucleotides of the phage genome reveals that VGJ phi has a distinctive region of 775 nucleotides and a conserved region with an overall genomic organization similar to that of previously characterized filamentous phages, such as CTX phi of V. cholerae and Ff phages of Escherichia coli. The conserved region carries 10 open reading frames (ORFs) coding for products homologous to previously reported peptides of other filamentous phages, and the distinctive region carries one ORF whose product is not homologous to any known peptide. VGJ phi, like other filamentous phages, uses a type IV pilus to infect V. cholerae; in this case, the pilus is the mannose-sensitive hemagglutinin. VGJ phi-infected V. cholerae overexpresses the product of one ORF of the phage (ORF112), which is similar to single-stranded DNA binding proteins of other filamentous phages. Once inside a cell, VGJ phi is able to integrate its genome into the same chromosomal attB site as CTX phi, entering into a lysogenic state. Additionally, we found an attP structure in VGJ phi, which is also conserved in several lysogenic filamentous phages from different bacterial hosts. Finally, since different filamentous phages seem to integrate into the bacterial dif locus by a general mechanism, we propose a model in which repeated integration events with different phages might have contributed to the evolution of the CTX chromosomal region in V. cholerae El Tor.


Assuntos
Bacteriófagos/genética , Inovirus/classificação , Inovirus/genética , Vibrio cholerae/virologia , Integração Viral , Sítios de Ligação Microbiológicos , Proteínas de Bactérias/química , Bacteriófagos/fisiologia , Sequência de Bases , Cromossomos Bacterianos , Genoma Viral , Inovirus/fisiologia , Dados de Sequência Molecular , Análise de Sequência de DNA , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA