Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 214(3): 1002-1018, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27389684

RESUMO

We examined whether variations in photosynthetic capacity are linked to variations in the environment and/or associated leaf traits for tropical moist forests (TMFs) in the Andes/western Amazon regions of Peru. We compared photosynthetic capacity (maximal rate of carboxylation of Rubisco (Vcmax ), and the maximum rate of electron transport (Jmax )), leaf mass, nitrogen (N) and phosphorus (P) per unit leaf area (Ma , Na and Pa , respectively), and chlorophyll from 210 species at 18 field sites along a 3300-m elevation gradient. Western blots were used to quantify the abundance of the CO2 -fixing enzyme Rubisco. Area- and N-based rates of photosynthetic capacity at 25°C were higher in upland than lowland TMFs, underpinned by greater investment of N in photosynthesis in high-elevation trees. Soil [P] and leaf Pa were key explanatory factors for models of area-based Vcmax and Jmax but did not account for variations in photosynthetic N-use efficiency. At any given Na and Pa , the fraction of N allocated to photosynthesis was higher in upland than lowland species. For a small subset of lowland TMF trees examined, a substantial fraction of Rubisco was inactive. These results highlight the importance of soil- and leaf-P in defining the photosynthetic capacity of TMFs, with variations in N allocation and Rubisco activation state further influencing photosynthetic rates and N-use efficiency of these critically important forests.


Assuntos
Altitude , Florestas , Umidade , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Clima Tropical , Dióxido de Carbono/metabolismo , Ensaios Enzimáticos , Cinética , Modelos Biológicos , Nitrogênio/metabolismo , Peru , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Ribulose-Bifosfato Carboxilase/metabolismo , Especificidade da Espécie , Temperatura
2.
Proc Natl Acad Sci U S A ; 111(48): E5224-32, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25422434

RESUMO

Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9-98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.


Assuntos
Biomassa , Ecossistema , Florestas , Árvores/crescimento & desenvolvimento , Algoritmos , Ciclo do Carbono , Conservação dos Recursos Naturais/métodos , Geografia , Modelos Teóricos , Peru , Densidade Demográfica , Dinâmica Populacional , Tecnologia de Sensoriamento Remoto/métodos , Reprodutibilidade dos Testes , Clima Tropical
3.
New Phytol ; 204(1): 127-139, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24942328

RESUMO

Spectral properties of foliage express fundamental chemical interactions of canopies with solar radiation. However, the degree to which leaf spectra track chemical traits across environmental gradients in tropical forests is unknown. We analyzed leaf reflectance and transmittance spectra in 2567 tropical canopy trees comprising 1449 species in 17 forests along a 3400-m elevation and soil fertility gradient from the Amazonian lowlands to the Andean treeline. We developed quantitative links between 21 leaf traits and 400-2500-nm spectra, and developed classifications of tree taxa based on spectral traits. Our results reveal enormous inter-specific variation in spectral and chemical traits among canopy trees of the western Amazon. Chemical traits mediating primary production were tightly linked to elevational changes in foliar spectral signatures. By contrast, defense compounds and rock-derived nutrients tracked foliar spectral variation with changing soil fertility in the lowlands. Despite the effects of abiotic filtering on mean foliar spectral properties of tree communities, the spectra were dominated by phylogeny within any given community, and spectroscopy accurately classified 85-93% of Amazonian tree species. Our findings quantify how tropical tree canopies interact with sunlight, and indicate how to measure the functional and biological diversity of forests with spectroscopy.


Assuntos
Folhas de Planta/química , Folhas de Planta/fisiologia , Árvores , Altitude , Carotenoides/análise , Carotenoides/metabolismo , Clorofila/análise , Clorofila/metabolismo , Clorofila A , Florestas , Filogenia , Característica Quantitativa Herdável , Solo , América do Sul , Análise Espectral/métodos , Clima Tropical
4.
Proc Natl Acad Sci U S A ; 111(15): 5604-9, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24591585

RESUMO

Patterns of tropical forest functional diversity express processes of ecological assembly at multiple geographic scales and aid in predicting ecological responses to environmental change. Tree canopy chemistry underpins forest functional diversity, but the interactive role of phylogeny and environment in determining the chemical traits of tropical trees is poorly known. Collecting and analyzing foliage in 2,420 canopy tree species across 19 forests in the western Amazon, we discovered (i) systematic, community-scale shifts in average canopy chemical traits along gradients of elevation and soil fertility; (ii) strong phylogenetic partitioning of structural and defense chemicals within communities independent of variation in environmental conditions; and (iii) strong environmental control on foliar phosphorus and calcium, the two rock-derived elements limiting CO2 uptake in tropical forests. These findings indicate that the chemical diversity of western Amazonian forests occurs in a regionally nested mosaic driven by long-term chemical trait adjustment of communities to large-scale environmental filters, particularly soils and climate, and is supported by phylogenetic divergence of traits essential to foliar survival under varying environmental conditions. Geographically nested patterns of forest canopy chemical traits will play a role in determining the response and functional rearrangement of western Amazonian ecosystems to changing land use and climate.


Assuntos
Biodiversidade , Folhas de Planta/química , Árvores/química , Árvores/crescimento & desenvolvimento , Análise de Variância , Cálcio/análise , Carbono/análise , Geografia , Análise dos Mínimos Quadrados , Peru , Fósforo/análise , Solo/química , Manejo de Espécimes/métodos , Análise Espectral , Temperatura , Clima Tropical
5.
Ecol Lett ; 17(3): 324-32, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24372865

RESUMO

The functional role of herbivores in tropical rainforests remains poorly understood. We quantified the magnitude of, and underlying controls on, carbon, nitrogen and phosphorus cycled by invertebrate herbivory along a 2800 m elevational gradient in the tropical Andes spanning 12°C mean annual temperature. We find, firstly, that leaf area loss is greater at warmer sites with lower foliar phosphorus, and secondly, that the estimated herbivore-mediated flux of foliar nitrogen and phosphorus from plants to soil via leaf area loss is similar to, or greater than, other major sources of these nutrients in tropical forests. Finally, we estimate that herbivores consume a significant portion of plant carbon, potentially causing major shifts in the pattern of plant and soil carbon cycling. We conclude that future shifts in herbivore abundance and activity as a result of environmental change could have major impacts on soil fertility and ecosystem carbon sequestration in tropical forests.


Assuntos
Ciclo do Carbono/fisiologia , Ecossistema , Alimentos , Herbivoria/fisiologia , Modelos Biológicos , Folhas de Planta/química , Árvores , Animais , Peru , Análise Espectral , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA