Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 13: 886162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783966

RESUMO

Alongside the use of fertilizer and chemical control of weeds, pests, and diseases modern breeding has been very successful in generating cultivars that have increased agricultural production several fold in favorable environments. These typically homogeneous cultivars (either homozygous inbreds or hybrids derived from inbred parents) are bred under optimal field conditions and perform well when there is sufficient water and nutrients. However, such optimal conditions are rare globally; indeed, a large proportion of arable land could be considered marginal for agricultural production. Marginal agricultural land typically has poor fertility and/or shallow soil depth, is subject to soil erosion, and often occurs in semi-arid or saline environments. Moreover, these marginal environments are expected to expand with ongoing climate change and progressive degradation of soil and water resources globally. Crop wild relatives (CWRs), most often used in breeding as sources of biotic resistance, often also possess traits adapting them to marginal environments. Wild progenitors have been selected over the course of their evolutionary history to maintain their fitness under a diverse range of stresses. Conversely, modern breeding for broad adaptation has reduced genetic diversity and increased genetic vulnerability to biotic and abiotic challenges. There is potential to exploit genetic heterogeneity, as opposed to genetic uniformity, in breeding for the utilization of marginal lands. This review discusses the adaptive traits that could improve the performance of cultivars in marginal environments and breeding strategies to deploy them.

3.
Plants (Basel) ; 9(4)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295289

RESUMO

Seed dormancy and timing of its release is an important developmental transition determining the survival of individuals, populations, and species in variable environments. Medicago truncatula was used as a model to study physical seed dormancy at the ecological and genetics level. The effect of alternating temperatures, as one of the causes releasing physical seed dormancy, was tested in 178 M. truncatula accessions over three years. Several coefficients of dormancy release were related to environmental variables. Dormancy varied greatly (4-100%) across accessions as well as year of experiment. We observed overall higher physical dormancy release under more alternating temperatures (35/15 °C) in comparison with less alternating ones (25/15 °C). Accessions from more arid climates released dormancy under higher experimental temperature alternations more than accessions originating from less arid environments. The plasticity of physical dormancy can probably distribute the germination through the year and act as a bet-hedging strategy in arid environments. On the other hand, a slight increase in physical dormancy was observed in accessions from environments with higher among-season temperature variation. Genome-wide association analysis identified 136 candidate genes related to secondary metabolite synthesis, hormone regulation, and modification of the cell wall. The activity of these genes might mediate seed coat permeability and, ultimately, imbibition and germination.

4.
Front Plant Sci ; 11: 189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180785

RESUMO

Hairy vetch (Vicia villosa ssp. villosa Roth) is native of Europe and Western Asia and it is the second most cultivated vetch worldwide. Hairy vetch is used as forage species in semiarid environments and as a legume cover crop in sub-humid and humid regions. Being an incompletely domesticated species, hairy vetch can form spontaneous populations in a new environment. These populations might contain novel and adaptive traits valuable for breeding. Niche occupancy based on geographic occurrence and environmental data of naturalized populations in central Argentina showed that these populations were distributed mainly on disturbed areas with coarse soil texture and alkaline-type soils. Low rainfall and warm temperatures during pre- and post-seed dispersal explained the potential distribution under sub-humid and semiarid conditions from Pampa and Espinal ecoregions. Conversely, local adaptation along environmental gradients did not drive the divergence among recently established Argentinian (AR) populations. The highest genetic diversity revealed by microsatellite analysis was observed within accessions (72%) while no clear separation was detected between AR and European (EU) genotypes, although naturalized AR populations showed strong differentiation with the wild EU accessions. Common garden experiments were conducted in 2014-16 in order to evaluate populations' germination, flowering, and biomass traits. European cultivars were characterized by low physical seed dormancy (PY), while naturalized AR accessions showed higher winter biomass production. Detected variation in the quantitative assessment of populations could be useful for selection in breeding for traits that convey favorable functions within specific contexts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA