Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arq. bras. cardiol ; 103(6,supl.2): 1-126, 12/2014. tab, graf
Artigo em Português | LILACS | ID: lil-732161
2.
Arq Bras Cardiol ; 103(6 Suppl 2): 1-126, 2014 Dec.
Artigo em Português | MEDLINE | ID: mdl-25591041
3.
Artigo em Inglês | VETINDEX | ID: vti-443328

RESUMO

This article reports the anti-inflammatory effect of Blutaparon portulacoides (B. portulacoides), specifically the ethanolic extract of its aerial parts, on the edema formation and leukocyte influx caused by Bothrops jararacussu (B. jararacussu) snake venom and Bothropstoxin-I and II (BthTX-I and II) isolated from this venom as an alternative treatment for Bothrops snakebites. The anti-inflammatory effect of B. portulacoides ethanolic extract was compared with an animal group pretreated with dexamethasone. B. portulacoides ethanolic extract significantly inhibited paw edema induced by B. jararacussu venom and by BthTX-I and II. Also, results demonstrated that the extract caused a reduction of the leukocyte influx induced by BthTX-I. However, the extract was not capable of inhibiting the leukocyte influx induced by the venom and by BthTX-II. In conclusion, these results suggest that the ethanolic extract of this plant possess components able to inhibit or inactivate toxins present in B. jararacussu venom, including its myotoxins, responsible for the edema formation. However, the leukocyte migration caused by the venom and BthTX-II was not inhibited by the plant, probably due to the different mechanisms involved in the edema formation and leukocyte influx. This is the first report of B. portulacoides extract as anti-inflammatory against snake venoms and isolated toxins.

4.
Artigo em Inglês | VETINDEX | ID: vti-442983

RESUMO

This paper describes a brief study on the crotoxin mechanism of action, regarding the transport of GABA and L-glutamate in rats cortico-cerebral synaptosomes and in heterologous systems, such as COS-7 cells expressing gabaergic transporters, and C6 glioma cells and Xenopus oocytes expressing glutamatergic transporters. Crotoxin concentrations over 1 µM caused an inhibitory effect of ³H-L-glutamate and ³H-GABA, and reversibly inhibited L-glutamate uptake by C6 glioma cells. When COS-7 cells were assayed, no inhibition of the ³H-GABA transport could be evidenced. Crotoxin kept its inhibitory effect on neurotransmitters uptake even when Ca2+ ions were removed from the medium, therefore, independently of its PLA2 activity. In addition, high concentrations (2 mM) of BPB did not avoid the action of crotoxin on the neurotransmitters uptake. Crotoxin also inhibited ³H-L-glutamate, independently on Na+ channel blockade by TTX. In addition, an evaluation of the lactic dehydrogenase activity indicated that uptake inhibition does not involve a hydrolytic action of crotoxin upon the membrane. We may also suggest that crotoxin acts, at least partially, altering the electrogenic equilibrium, as evidenced by confocal microscopy, when a fluorescent probe was used to verify cell permeability on C6 glioma cells in presence of crotoxin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA