Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Front Immunol ; 15: 1440662, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136016

RESUMO

Background: Cardiac arrhythmias are the main cause of sudden death due to Chronic Chagasic Cardiomyopathy (CCC). Here we investigated alterations in connexin 43 (Cx43) expression and phosphorylation in cardiomyocytes as well as associations with cardiac arrhythmias in CCC. Methods: C57Bl/6 mice infected with Trypanosoma cruzi underwent cardiac evaluations at 6 and 12 months after infection via treadmill testing and EKG. Histopathology, cytokine gene expression, and distribution of total Cx43 and its phosphorylated forms Cx43S368 and Cx43S325/328/330 were investigated. Human heart samples obtained from subjects with CCC were submitted to immunofluorescence analysis. In vitro simulation of a pro-inflammatory microenvironment (IL-1ß, TNF, and IFN-γ) was performed in H9c2 cells and iPSC-derived cardiomyocytes to evaluate Cx43 distribution, action potential duration, and Lucifer Yellow dye transfer. Results: Mice chronically infected with T. cruzi exhibited impaired cardiac function associated with increased inflammation, fibrosis and upregulated IL-1ß, TNF, and IFN-γ gene expression. Confocal microscopy revealed altered total Cx43, Cx43S368 and Cx43S325/328/330 localization and phosphorylation patterns in CCC, with dispersed staining outside the intercalated disc areas, i.e., in lateral membranes and the cytoplasm. Reduced co-localization of total Cx43 and N-cadherin was observed in the intercalated discs of CCC mouse hearts compared to controls. Similar results were obtained in human CCC heart samples, which showed Cx43 distribution outside the intercalated discs. Stimulation of human iPSC-derived cardiomyocytes or H9c2 cells with IL-1ß, TNF, and IFN-γ induced alterations in Cx43 localization, reduced action potential duration and dye transfer between adjacent cells. Conclusion: Heart inflammation in CCC affects the distribution and phosphorylation pattern of Cx43, which may contribute to the generation of conduction disturbances in Chagas disease.


Assuntos
Cardiomiopatia Chagásica , Conexina 43 , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Conexina 43/metabolismo , Conexina 43/genética , Animais , Cardiomiopatia Chagásica/metabolismo , Cardiomiopatia Chagásica/patologia , Cardiomiopatia Chagásica/imunologia , Cardiomiopatia Chagásica/parasitologia , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Miócitos Cardíacos/patologia , Inflamação/metabolismo , Fosforilação , Masculino , Doença Crônica , Trypanosoma cruzi , Modelos Animais de Doenças , Linhagem Celular , Citocinas/metabolismo , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/parasitologia , Arritmias Cardíacas/imunologia , Feminino
2.
Nat Prod Res ; : 1-5, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885341

RESUMO

Skin lesions are considered a public health problem, compromising patients' quality of life. This work aimed to evaluate the effects of fraxetin and monnieriside A on Cultured L929 Fibroblasts through the scratch assay. Supernatants and cells from the fibroblast culture treated with the compounds were used to evaluate essential markers of the tissue repair process (IGF-1, VEGF, IL-8, IL-10, FGF-2, COL1A2, COL4A, PDGF) using ELISA and qRT-PCR. The results showed that fraxetin and MOA were non-cytotoxic and could stimulate cellular migration. Fraxetin induced IGF-1, VEGF, IL-8, and IL-10 expression, while MOA induced FGF2, COL1A2, and IL-10 expression. Altogether, these results set provides evidence that fraxetin and MOA have healing potential for tissue repair, paving the way for in vivo studies and clinical trials to validate the in vitro results.

3.
Biotechnol Lett ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900338

RESUMO

Mesenchymal stem/stromal cells (MSC) play a pivotal role in regenerative therapies. Recent studies show that factors secreted by MSC can replicate their biological activity, driving the emergence of cell-free therapy, likely to surpass stem cell therapy. Patents are an objective measure of R&D and innovation activities, and patent mapping allows us to verify the state of the art and technology, anticipate trends, and identify emerging lines of research. This review performed a search on Derwent World Patents Index™ and retrieved 269 patent families related to the MSC-derived cell-free products. Analysis reveals an exponential increase in patents from the mid-2010s, primarily focusing on exosomes. The patent's contents offer a great diversity of applications and associated technologies by using the products as medicinal agents or drug delivery systems. Nevertheless, numerous application branches remain unexplored, suggesting vast potential for cell-free technologies alone or combined with other approaches.

4.
Pharmaceuticals (Basel) ; 17(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794204

RESUMO

Safer analgesic drugs remain a hard challenge because of cardiovascular and/or gastrointestinal toxicity, mainly. So, this study evaluated in vivo the antiproliferative actions of a fraction with casearins (FC) from Casearia sylvestris leaves against human colorectal carcinomas and antihyperalgesic effects on inflammatory- or opiate-based pain relief and oncologic pain in Sarcoma 180 (S180)-bearing mice. Moreover, docking investigations evaluated the binding among Casearin X and NMDA(N-methyl-D-aspartate)-type glutamate receptors. HCT-116 colorectal carcinoma-xenografted mice were treated with FC for 15 days. Antinociceptive assays included chemically induced algesia and investigated mechanisms by pharmacological blockade. Intraplantar region S180-bearing animals received a single dose of FC and were examined for mechanical allodynia and behavior alterations. AutoDock Vina determined molecular interactions among Cas X and NMDA receptor subunits. FC reduced tumor growth at i.p. (5 and 10 mg/kg) and oral (25 mg/kg/day) doses (31.12-39.27%). FC reduced abdominal pain, as confirmed by formalin and glutamate protocols, whose antinociception activity was blocked by naloxone and L-NAME (neurogenic phase) and naloxone, atropine, and flumazenil (inflammatory phase). Meanwhile, glibenclamide potentiated the FC analgesic effects. FC increased the paw withdrawal threshold without producing changes in exploratory parameters or motor coordination. Cas X generated a more stable complex with active sites of the NMDA receptor GluN2B subunits. FC is a promising antitumor agent against colorectal carcinomas, has peripheral analgesic effects by desensitizing secondary afferent neurons, and inhibits glutamate release from presynaptic neurons and/or their action on cognate receptors. These findings emphasize the use of clerodane diterpenes against cancer-related pain conditions.

5.
Expert Opin Ther Pat ; 34(3): 171-186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38578253

RESUMO

INTRODUCTION: Nucleic acid-based therapeutics offer groundbreaking potential for treating genetic diseases and advancing next-generation vaccines. Despite their promise, challenges in efficient delivery persist due to the properties of nucleic acids. Nanoparticles (NPs) serve as vital carriers, facilitating effective delivery to target cells, and addressing these challenges. Understanding the global landscape of patents in this field is essential for fostering innovation and guiding decision-making for researchers, the pharmaceutical industry, and regulatory agencies. AREAS COVERED: This review provides a comprehensive overview of patent compositions, applications, and manufacturing aspects concerning NPs as nucleic acid delivery systems. It delves into temporal trends, protection locations, market dynamics, and the most influential technological domains. In this work, we provide valuable insights into the advancements and potential of NP-based nucleic acid delivery systems, with a special focus on their pivotal role in advancing cutting-edge therapeutic solutions. EXPERT OPINION: Investment in NPs for nucleic acid delivery has significantly surged in recent years. However, translating these therapies into clinical practice faces obstacles, including the need for robust clinical evidence, regulatory compliance, and streamlined manufacturing processes. To address these challenges, our review article summarizes recent advances. We aim to engage researchers worldwide in the development of these promising technologies.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Ácidos Nucleicos , Patentes como Assunto , Humanos , Ácidos Nucleicos/administração & dosagem , Animais , Portadores de Fármacos/química , Terapia Genética/métodos
6.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543059

RESUMO

Anti-inflammatory agents are widely used for the treatment of inflammatory diseases. Nevertheless, the associated side effects of the available drugs make it necessary to search for new anti-inflammatory drugs. Here, we investigated the anti-inflammatory activity of solidagenone. Initially, we observed that a single dose of 30, 60, or 90 mg/kg of solidagenone did not result in mortality or elicit any discernible signs of toxicity in mice. At the same doses, solidagenone promoted a significant reduction in the migration of neutrophils in an acute peritonitis model and decreased mortality in a lipopolysaccharide-induced endotoxic shock model. Interestingly, treatment with solidagenone conferred a protective effect against leukopenia and thrombocytopenia, hematological disorders commonly observed in sepsis conditions. In addition, treatment with all the doses of solidagenone promoted a significant reduction in nitric oxide, TNF-α, and IL-1ß levels relative to the LPS-stimulated vehicle-treated cultures. Furthermore, gene expression and in silico analyses also supported the modulation of the NF-κB pathway by solidagenone. Finally, in silico pharmacokinetics predictions indicated a favorable drugability profile for solidagenone. Taken together, the findings of the present investigation show that solidagenone exhibits significant anti-inflammatory properties in acute experimental models, potentially through the modulation of the NF-κB signaling pathway.

7.
Vaccines (Basel) ; 12(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38543870

RESUMO

The COVID-19 pandemic and the consequent emergence of new SARS-CoV-2 variants of concern necessitates the determination of populational serum potency against the virus. Here, we standardized and validated an imaging-based method to quantify neutralizing antibodies against lentiviral particles expressing the spike glycoprotein (pseudovirus). This method was found to efficiently quantify viral titers based on ZsGreen-positive cells and detect changes in human serum neutralization capacity induced by vaccination with up to two doses of CoronaVac, Comirnaty, or Covishield vaccines. The imaging-based protocol was also used to quantify serum potency against pseudoviruses expressing spikes from Delta, Omicron BA.1.1.529, and BA.4/5. Our results revealed increases in serum potency after one and two doses of the vaccines evaluated and demonstrated that Delta and Omicron variants escape from antibody neutralization. The method presented herein represents a valuable tool for the screening of antibodies and small molecules capable of blocking viral entry and could be used to evaluate humoral immunity developed by different populations and for vaccine development.

8.
Heliyon ; 10(4): e25539, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370238

RESUMO

Immune imprinting is now evident in COVID-19 vaccinated people. This phenomenon may impair the development of effective neutralizing antibodies against variants of concern (VoCs), mainly Omicron and its subvariants. Consequently, the boost doses with bivalent vaccines have not shown a significant gain of function regarding the neutralization of Omicron. The approach to design COVID-19 vaccines must be revised to improve the effectiveness against VoCs. Here, we took advantage of the self-amplifying characteristic of RepRNA and developed a polyvalent formulation composed of mRNA from five VoCs. LION/RepRNA Polyvalent induced neutralizing antibodies in mice previously immunized with LION/RepRNA D614G and reduced the imprinted phenotype associated with low neutralization capacity of Omicron B.1.1.529 pseudoviruses. The polyvalent vaccine can be a strategy to handle the low neutralization of Omicron VoC, despite booster doses with either monovalent or bivalent vaccines.

9.
Heliyon ; 9(12): e22060, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046170

RESUMO

The Amazon rainforest encompasses one of the largest biodiversities of the world and is home to a wide variety of food and therapeutic plants. Due to the diversity of components, the fruits of the Amazon biome possess essential physicochemical, nutritional, and pharmacological properties, strengthening the idea that fruit consumption may provide benefits to human health. Thus, the objective of this study was to investigate the current scenario of the use of Amazonian fruits on the development of food, pharmaceutical, nutraceutical, or cosmetic products through the study of filed patents. A prospecting strategy conducted focusing on patents was used to investigate the application of the following fruits: Euterpe oleracea, Oenocarpus bacaba, Caryocar brasiliense, Garcinia gardneriana, Nephelium lappaceum, and Astrocaryum vulgare. A total of 264 patent documents were found. In 2016, a peak of 33 applications was reached, followed by a peak in 2019 with 32 applications. The study is distributed in three main application areas: cosmetics, pharmaceuticals, and food. The Asian continent was the region with the world leadership in this theme, followed by Brazil. Thus, technological prospection studies can foster investments in translational research to elucidate the effects and properties of Amazonian fruits, which can generate sustainable development of new products with industrial potential.

10.
Arch Microbiol ; 205(12): 379, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37950820

RESUMO

The management of inflammatory states typically involves non-steroidal anti-inflammatory drugs (NSAIDs) and opiates. Understanding the mechanisms underlying the processing of nociceptive information from potential alternatives such as some polysaccharides may enable new and meaningful therapeutic approaches. In this study, α-D-mannan isolated from the Kluyveromyces marxianus cell wall produced antinociceptive effects in models of inflammatory pain (formalin and complete Freund's adjuvant tests). Furthermore, α-D-mannan reduced paw edema and interleukin-6 (IL-6) production after carrageenan-induced inflammation. The polysaccharide α-D-mannan was characterized by gas chromatography-mass spectrometry, methylation analysis, and spectroscopic techniques. Moreover, the Doehlert experimental design was applied to find the optimal conditions for biomass production, with the best conditions being 10.8 g/L and 117 h for the glucose concentration and the fermentation time, respectively. These results indicate that α-D-mannan from K. marxianus exerts anti-inflammatory and antinociceptive effects in mice, possibly via a mechanism dependent on the inhibition of IL-6 production.


Assuntos
Analgésicos , Interleucina-6 , Camundongos , Animais , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/uso terapêutico , Mananas , Anti-Inflamatórios/farmacologia , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA