Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Cell Physiol ; : e31397, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39091018

RESUMO

Chronic and excessive glucocorticoid (GC) exposure can cause Cushing's syndrome, resulting in fat accumulation in selected body areas. Particularly in the brown adipose tissue (BAT), GC acts negatively, resulting in whitening of the tissue. We hypothesized that dysregulation of microRNAs by GC could be an additional mechanism to explain its negative actions in BAT. Male Wistar rats were divided into two groups: (1) Control sham and (2) GC group that was administered dexamethasone 6.25 mg/200 µL via osmotic pump implantation over 28 days. After this period, the animals were euthanized and BAT tissue was properly stored. Human fat cells treated with dexamethasone were used to translate the experimental results found in animals to human biology. GC-treated rat BAT presented with large lipid droplets, severely impaired thermogenic activation, and reduced glucose uptake measured by 18F-FDG PET/CT. GC exposure induced a reduction in the mitochondrial OXPHOS system and oxygen consumption. MicroRNA profiling of BAT revealed five top-regulated microRNAs and among them miR-21-5p was the most significantly upregulated in GC-treated rats compared to the control group. Although upregulation of miR-21-5p in the tissue, differentiated primary brown adipocytes from GC-treated rats had decreased miR-21-5p levels compared to the control group. To translate these results to the clinic, human brown adipocytes were treated with dexamethasone and miR-21-5p inhibitor. In human brown cells, inhibition of miR-21-5p increased brown adipocyte differentiation and prevented GC-induced glucose uptake, resulting in a lower glycolysis rate. In conclusion, high-dose GC therapy significantly impacts brown adipose tissue function, with a notable association between glucose uptake and miR-21-5p.

2.
Biol Sport ; 41(2): 163-174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38524817

RESUMO

Although studies have demonstrated the effectiveness of exercise in controlling systemic arterial hypertension (SAH), the mechanisms involved in this effect are still poorly understood. Thus, this study investigated the impact of aerobic training on the relationship between platelet-activating factor (PAF) circulating levels and blood pressure in hypertensives. Seventy-seven hypertensive subjects were enrolled in this randomized controlled trial (age 66.51 ± 7.53 years, body mass 76.17 ± 14.19 kg). Participants were randomized to two groups: the intervention group (IG, n = 36), composed of hypertensive individuals submitted to an aerobic training protocol, and the control group (CG, n = 41), composed of non-exercised hypertensives. Body mass index, arterial blood pressure, quality of life, respiratory muscle strength, and functional capacity were assessed before and after 12 weeks. PAF and plasma cytokine levels were also evaluated respectively by liquid chromatography coupled with mass spectrometry and enzyme-linked immunosorbent assay. Aerobic training promoted a significant reduction in blood pressure while functional capacity, expiratory muscle strength, and quality of life, PAFC16:0 and PAFC18:1 plasma levels were increased in comparison to the CG (p < 0.05). In addition, multiple correlation analysis indicated a positive correlation [F (3.19) = 6.322; p = 0.001; R2adjusted = 0.499] between PAFC16:0 levels and expiratory muscle strength after aerobic training. Taken together, our findings indicate that PAF may be involved in the indirect mechanisms that control SAH, being mainly associated with increased respiratory muscle strength in hypertensive subjects undergoing aerobic training.

3.
J Proteome Res ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37830917

RESUMO

Oral squamous cell carcinoma (OSCC) is the prevalent type of oral cavity cancer, requiring precise, accurate, and affordable diagnosis to identify the disease in early stages, Comprehending the differences in lipid profiles between healthy and cancerous tissues encompasses great relevance in identifying biomarker candidates and enhancing the odds of successful cancer treatment. Therefore, the present study evaluates the analytical performance of simultaneous mRNA and lipid extraction in gingiva tissue from healthy patients and patients diagnosed with OSCC preserved in TRIzol reagent. The data was analyzed by partial least-squares discriminant analysis (PLS-DA) and confirmed via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The lipid extraction in TRIzol solution was linear in a range from 330 to 2000 ng mL-1, r2 > 0.99, intra and interday precision and accuracy <15%, and absolute recovery values ranging from 90 to 110%. The most important lipids for tumor classification were evaluated by MALDI-MSI, revealing that the lipids responsible for distinguishing the OSCC group are more prevalent in the cancerous tissue in contrast to the healthy group. The results exhibit the possibilities to do transcriptomic and lipidomic analyses in the same sample and point out important candidates related to the presence of OSCC.

4.
Brain Behav Immun ; 114: 275-286, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648004

RESUMO

BACKGROUND: Sex-determined differences are rarely addressed in the management of diseases, despite well-known contrasting outcomes between female and male patients. In COVID-19 there is a remarkable disparity, with higher rates of mortality and more severe acute disease in men compared to women, who are mostly affected by long COVID-19. Furthermore, whether androgens play a protective or detrimental role in COVID-19 is still a matter of debate. Hence, the adequate management of the disease, especially regarding men presenting acute disease aggravation, still needs important data to elucidate the interplay between sex hormones and host immune responses that drive the worse evolution in male patients. METHODS: A cohort of 92 controls and 198 non-severe and severe COVID-19 patients, from both sexes, was assessed for clinical outcomes, plasma steroids, gonadotropins, sex hormone binding globulin (SHBG) and immune mediators, before vaccination. These data were correlated with the global gene expression of blood leukocytes. The androgen receptor (AR) signaling pathway was investigated by transcriptomics and tracheal aspirate was obtained from severe patients for SARS-COV-2 quantification in the respiratory tract. The interplay among clinical, endocrine and immunological data deciphered the sex differences in COVID-19. Importantly, statistical analyses, using 95% confidence interval, considered confounding factors such as age and comorbidities, to definitely parse the role of androgens in the disease outcome. RESULTS: There were notable contrasting levels of testosterone and dihydrotestosterone (DHT) throughout the disease course in male but not female patients. Inflammatory mediators presented significant negative correlations with testosterone, which was partially dependent on age and diabetes in men. Male subjects with severe COVID-19 had a significant up regulation of the AR signaling pathway, including modulation of TMPRSS2 and SRD5A1 genes, which are related to the viral infection and DHT production. Indeed, men had a higher viral load in the tracheal aspirate and levels of DHT were associated with increased relative risk of death. In contrast, the testosterone hormone, which was notably reduced in severe disease, was significantly related with susceptibility to COVID-19 worsening in male patients. Secondary hypogonadism was ruled out in the male severe COVID-19 subjects, as FSH, LH, and SHBG levels were not significantly altered. Instead, these subjects tended to have increased gonadotropin levels. Most interestingly, in this study we identified, for the first time, combined sets of clinical and immunoendocrine parameters that together predicted progression from non-severe to severe COVID-19 in men. One of the limitations of our study was the low or undetectable levels of DHT in many patients. Then, the evaluation of enzymes related to biosynthesis and signaling by androgens was mandatory and reiterated our findings. CONCLUSIONS: These original results unraveled the disease immunoendocrine regulation, despite vaccination or comorbidities and pointed to the fundamental divergent role of the androgens testosterone and DHT in the determination of COVID-19 outcomes in men. Therefore, sex-specific management of the dysregulated responses, treatments or public health measures should be considered for the control of COVID-19 pandemic.

5.
Cells ; 12(15)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37566018

RESUMO

SARS-CoV-2 infection triggers distinct patterns of disease development characterized by significant alterations in host regulatory responses. Severe cases exhibit profound lung inflammation and systemic repercussions. Remarkably, critically ill patients display a "lipid storm", influencing the inflammatory process and tissue damage. Sphingolipids (SLs) play pivotal roles in various cellular and tissue processes, including inflammation, metabolic disorders, and cancer. In this study, we employed high-resolution mass spectrometry to investigate SL metabolism in plasma samples obtained from control subjects (n = 55), COVID-19 patients (n = 204), and convalescent individuals (n = 77). These data were correlated with inflammatory parameters associated with the clinical severity of COVID-19. Additionally, we utilized RNAseq analysis to examine the gene expression of enzymes involved in the SL pathway. Our analysis revealed the presence of thirty-eight SL species from seven families in the plasma of study participants. The most profound alterations in the SL species profile were observed in patients with severe disease. Notably, a predominant sphingomyelin (SM d18:1) species emerged as a potential biomarker for COVID-19 severity, showing decreased levels in the plasma of convalescent individuals. Elevated SM levels were positively correlated with age, hospitalization duration, clinical score, and neutrophil count, as well as the production of IL-6 and IL-8. Intriguingly, we identified a putative protective effect against disease severity mediated by SM (d18:1/24:0), while ceramide (Cer) species (d18:1/24:1) and (d18:1/24:0)were associated with increased risk. Moreover, we observed the enhanced expression of key enzymes involved in the SL pathway in blood cells from severe COVID-19 patients, suggesting a primary flow towards Cer generation in tandem with SM synthesis. These findings underscore the potential of SM as a prognostic biomarker for COVID-19 and highlight promising pharmacological targets. By targeting sphingolipid pathways, novel therapeutic strategies may emerge to mitigate the severity of COVID-19 and improve patient outcomes.


Assuntos
COVID-19 , Esfingomielinas , Humanos , Prognóstico , SARS-CoV-2/metabolismo , Ceramidas/metabolismo , Esfingolipídeos/metabolismo , Biomarcadores
6.
Eur J Pharmacol ; 956: 175932, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37536622

RESUMO

Graft-versus-host disease (GVHD) is a serious inflammatory illness that often occurs as a secondary complication of bone marrow transplantation. Current therapies have limited effectiveness and fail to achieve a balance between inflammation and the graft-versus-tumor effect. In this study, we investigate the effects of the endocannabinoid anandamide on the complex pathology of GVHD. We assess the effects of an irreversible inhibitor of fatty acid amine hydrolase or exogenous anandamide and find that they increase survival and reduce clinical signs in GVHD mice. In the intestine of GVHD mice, treatment with exogenous anandamide also leads to a reduction in the number of CD3+, CD3+CD4+, and CD3+CD8+ cells, which reduces the activation of CD3+CD4+ and CD3+CD8+ cells, as assessed by enhanced CD28 expression, a T cell co-stimulatory molecule. Exogenous AEA was also able to reduce TNF-α and increase IL-10 in the intestine of GVHD mice. In the liver, exogenous AEA reduces injury, TNF-α levels, and the number of CD3+CD8+ cells. Interestingly, anandamide reduces Mac-1α, which lowers the adhesion of transplanted cells in mesenteric veins. These effects are mimicked by JWH133-a CB2 selective agonist-and abolished by treatment with a CB2 antagonist. Furthermore, the effects caused by anandamide treatment on survival were related to the CB2 receptor, as the CB2 antagonist abolished it. This study shows the critical role of the CB2 receptor in the modulation of the inflammatory response of GVHD by treatment with anandamide, the most prominent endocannabinoid.


Assuntos
Endocanabinoides , Doença Enxerto-Hospedeiro , Animais , Camundongos , Endocanabinoides/farmacologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/prevenção & controle , Intestinos , Linfócitos/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Fator de Necrose Tumoral alfa
7.
J Bone Miner Res ; 38(8): 1135-1153, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37314430

RESUMO

Leukotrienes (LTs) are derived from arachidonic acid metabolism by the 5-lipoxygenase (5-LO) enzyme. The production of LTs is stimulated in the pathogenesis of rheumatoid arthritis (RA), osteoarthritis, and periodontitis, with a relevant contribution to bone resorption. However, its role in bone turnover, particularly the suppression of bone formation by modulating the function of osteoclasts and osteoblasts, remains unclear. We investigated the effects of LTs on bone metabolism and their impact on osteogenic differentiation and osteoclastogenesis using a 5-LO knockout (KO) mouse model. Results from micro-computed tomography (µCT) analysis of femur from 8-week-old 5-LO-deficient mice showed increased cortical bone and medullary region in females and males and decreased trabecular bone in females. In the vertebra, we observed increased marrow area in both females and males 5-LO KO and decreased trabecular bone only in females 5-LO KO. Immunohistochemistry (IHC) analysis showed higher levels of osteogenic markers tissue-nonspecific alkaline phosphatase (TNAP) and osteopontin (OPN) and lower expression of osteoclastogenic marker tartrate-resistant acid phosphatase (TRAP) in the femurs of 5-LO KO mice versus wild-type (WT). Alkaline phosphatase activity and mineralization assay results showed that the 5-LO absence enhances osteoblasts differentiation and mineralization but decreases the proliferation. Alkaline phosphatase (ALP), Bglap, and Sp7 gene expression were higher in 5-LO KO osteoblasts compared to WT cells. Eicosanoids production was higher in 5-LO KO osteoblasts except for thromboxane 2, which was lower in 5-LO-deficient mice. Proteomic analysis identified the downregulation of proteins related to adenosine triphosphate (ATP) metabolism in 5-LO KO osteoblasts, and the upregulation of transcription factors such as the adaptor-related protein complex 1 (AP-1 complex) in long bones from 5-LO KO mice leading to an increased bone formation pattern in 5-LO-deficient mice. We observed enormous differences in the morphology and function of osteoclasts with reduced bone resorption markers and impaired osteoclasts in 5-LO KO compared to WT osteoclasts. Altogether, these results demonstrate that the absence of 5-LO is related to the greater osteogenic profile. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Reabsorção Óssea , Osteogênese , Masculino , Feminino , Camundongos , Animais , Fosfatase Alcalina/metabolismo , Microtomografia por Raio-X , Proteômica , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular , Camundongos Knockout , Leucotrienos/metabolismo , Leucotrienos/farmacologia
8.
Basic Clin Pharmacol Toxicol ; 133(1): 16-28, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37076976

RESUMO

Bacterial infections are often accompanied by fever and generalized muscle pain. However, the treatment of pain with an infectious aetiology has been overlooked. Thus, we investigated the impact of cannabidiol (CBD) in bacterial lipopolysaccharide (LPS)-induced nociception. Male Swiss mice received intrathecal (i.t.) LPS injection, and the nociceptive threshold was measured by the von Frey filaments test. Spinal involvement of the cannabinoid CB2 receptor, toll-like receptor 4 (TLR4), microglia and astrocytes were evaluated by i.t. administration of their respectively antagonists or inhibitors. Western blot, immunofluorescence, ELISA and liquid chromatography-mass spectrometry were used to assess Cannabinoid CB2 receptors and TLR4 spinal expression, proinflammatory cytokines and endocannabinoid levels. CBD was administered intraperitoneally at 10 mg/kg. The pharmacological assay demonstrated TLR4 participation in LPS-induced nociception. In addition, spinal TLR4 expression and proinflammatory cytokine levels were increased in this process. CBD treatment prevented LPS-induced nociception and TLR4 expression. AM630 reversed antinociception and reduced CBD-induced endocannabinoids up-regulation. Increased spinal expression of the cannabinoid CB2 receptor was also found in animals receiving LPS, which was accompanied by reduced TLR4 expression in CBD-treated mice. Taken together, our findings indicated that CBD is a potential treatment strategy to control LPS-induced pain by attenuating TLR4 activation via the endocannabinoid system.


Assuntos
Canabidiol , Camundongos , Masculino , Animais , Canabidiol/farmacologia , Endocanabinoides/farmacologia , Lipopolissacarídeos/toxicidade , Nociceptividade , Receptor 4 Toll-Like/metabolismo , Dor , Receptor CB1 de Canabinoide
9.
Mem Inst Oswaldo Cruz ; 118: e220160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888851

RESUMO

BACKGROUND: The knowledge about eicosanoid metabolism and lipid droplet (LD) formation in the Leishmania is very limited and new approaches are needed to identify which bioactive molecules are produced of them. OBJECTIVES: Herein, we compared LDs and eicosanoids biogenesis in distinct Leishmania species which are etiologic agents of different clinical forms of leishmaniasis. METHODS: For this, promastigotes of Leishmania amazonensis, L. braziliensis and L. infantum were stimulated with polyunsaturated fatty acids (PUFA) and LD and eicosanoid production was evaluated. We also compared mutations in structural models of human-like cyclooxygenase-2 (GP63) and prostaglandin F synthase (PGFS) proteins, as well as the levels of these enzymes in parasite cell extracts. FINDINGS: PUFAs modulate the LD formation in L. braziliensis and L. infantum. Leishmania spp with equivalent tissue tropism had same protein mutations in GP63 and PGFS. No differences in GP63 production were observed among Leishmania spp, however PGFS production increased during the parasite differentiation. Stimulation with arachidonic acid resulted in elevated production of hydroxyeicosatetraenoic acids compared to prostaglandins. MAIN CONCLUSIONS: Our data suggest LD formation and eicosanoid production are distinctly modulated by PUFAS dependent of Leishmania species. In addition, eicosanoid-enzyme mutations are more similar between Leishmania species with same host tropism.


Assuntos
Leishmania braziliensis , Leishmania infantum , Leishmania mexicana , Leishmania , Leishmaniose , Humanos , Gotículas Lipídicas , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/metabolismo , Leishmania braziliensis/genética , Leishmania infantum/genética
10.
J Pharm Pharmacol ; 75(5): 655-665, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36946366

RESUMO

OBJECTIVES: This study aimed to investigate the effect of cannabidiol (CBD) on type 4 Toll-like receptors (TLR4), glial cells and pro-inflammatory cytokines during the neuropathic pain induced by the chemotherapy agent paclitaxel (PTX), as well as the involvement of the endocannabinoid system in this process. METHODS: Male C57BL6 mice were subjected to PTX-induced neuropathic pain. To evaluate the involvement of the TLR4, glial cells and cannabinoid CB2 receptor, specific inhibitors or antagonists were intrathecally administered. The western blotting and immunofluorescence assay was performed to evaluate the spinal expression of TLR4, microglia, astrocytes and cannabinoid CB2 receptor. The levels of spinal pro-inflammatory cytokines and endocannabinoids were determined by enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry analysis, respectively. KEY FINDINGS: CBD prevented PTX-induced neuropathic pain, and the cannabinoid CB2 receptor antagonist AM630 reversed this effect. In addition, CBD treatment inhibited the spinal expression of TLR4 and Iba1 in mice with neuropathic pain. CBD also increased spinal levels of endocannabinoids anandamide and 2-arachidonoylglycerol, and reduced levels of cytokines in mice with neuropathic pain. CONCLUSIONS: CBD was efficient in preventing PTX-induced neuropathic pain, and this effect may involve inhibition of the TLR4 on microglia spinal with activation of the endocannabinoid system.


Assuntos
Antineoplásicos , Canabidiol , Canabinoides , Neuralgia , Masculino , Camundongos , Animais , Endocanabinoides/metabolismo , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Receptor 4 Toll-Like , Receptor CB2 de Canabinoide/uso terapêutico , Camundongos Endogâmicos C57BL , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/prevenção & controle , Paclitaxel/uso terapêutico , Citocinas , Antineoplásicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA