Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Pharmacol Rep ; 76(3): 585-599, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619735

RESUMO

BACKGROUND: Amiodarone (AMIO) is an antiarrhythmic drug with the pKa in the physiological range. Here, we explored how mild extracellular pH (pHe) changes shape the interaction of AMIO with atrial tissue and impact its pharmacological properties in the classical model of sea anemone sodium channel neurotoxin type 2 (ATX) induced late sodium current (INa-Late) and arrhythmias. METHOD: Isolated atrial cardiomyocytes from male Wistar rats and human embryonic kidney cells expressing SCN5A Na+ channels were used for patch-clamp experiments. Isolated right atria (RA) and left atria (LA) tissue were used for bath organ experiments. RESULTS: A more acidophilic pHe caused negative inotropic effects on isolated RA and LA atrial tissue, without modification of the pharmacological properties of AMIO. A pHe of 7.0 changed the sodium current (INa) related components of the action potential (AP), which was enhanced in the presence of AMIO. ATXinduced arrhythmias in isolated RA and LA. Also, ATX prolonged the AP duration and enhanced repolarization dispersion in isolated cardiomyocytes in both pHe 7.4 and pHe 7.0. Pre-incubation of the isolated RA and LA and isolated atrial cardiomyocytes with AMIO prevented arrhythmias induced by ATX only at a pHe of 7.0. Moreover, AMIO was able to block INa-Late induced by ATX only at a pHe of 7.0. CONCLUSION: The pharmacological properties of AMIO concerning healthy rat atrial tissue are not dependent on pHe. However, the prevention of arrhythmias induced by INa-Late is pHe-dependent. The development of drugs analogous to AMIO with charge stabilization may help to create more effective drugs to treat arrhythmias related to the INa-Late.


Assuntos
Potenciais de Ação , Amiodarona , Antiarrítmicos , Arritmias Cardíacas , Átrios do Coração , Miócitos Cardíacos , Ratos Wistar , Animais , Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Masculino , Humanos , Ratos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Concentração de Íons de Hidrogênio , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/induzido quimicamente , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Células HEK293 , Sódio/metabolismo , Técnicas de Patch-Clamp , Venenos de Cnidários/farmacologia
3.
Food Chem Toxicol ; 187: 114596, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556154

RESUMO

Tebuconazole (TEB), a widely used pesticide in agriculture to combat fungal infections, is commonly detected in global food, potable water, groundwater, and human urine samples. Despite its known in vivo toxicity, its impact on heart function remains unclear. In a 28-day study on male Wistar rats (approximately 100 g), administering 10 mg/kg/day TEB or a vehicle (control) revealed no effect on body weight gain or heart weight, but an increase in the infarct area in TEB-treated animals. Notably, TEB induced time-dependent changes in in vivo electrocardiograms, particularly prolonging the QT interval after 28 days of administration. Isolated left ventricular cardiomyocytes exposed to TEB exhibited lengthened action potentials and reduced transient outward potassium current. TEB also increased reactive oxygen species (ROS) production in these cardiomyocytes, a phenomenon reversed by N-acetylcysteine (NAC). Furthermore, TEB-treated animals, when subjected to an in vivo dobutamine (Dob) and caffeine (Caf) challenge, displayed heightened susceptibility to severe arrhythmias, a phenotype prevented by NAC. In conclusion, TEB at the no observed adverse effect level (NOAEL) dose adversely affects heart electrical function, increases arrhythmic susceptibility, partially through ROS overproduction, and this phenotype is reversible by scavenging ROS with NAC.


Assuntos
Arritmias Cardíacas , Dobutamina , Triazóis , Humanos , Ratos , Animais , Masculino , Espécies Reativas de Oxigênio , Ratos Wistar , Arritmias Cardíacas/induzido quimicamente , Acetilcisteína , Miócitos Cardíacos
5.
Eur J Pharmacol ; 960: 176127, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37858835

RESUMO

INTRODUCTION: Amiodarone (AMD) is a clinically used drug to treat arrhythmias with significant effect upon the cardiac sodium channel Nav1.5. AMD has a pKa of 6.56, and changes in extracellular pH (pHe) may alter its pharmacological properties. Here we explored how changes in pHe impacts the pharmacological properties of AMD upon human-Nav1.5-sodium-current (INa) and in ex vivo rat hearts. METHODS: Embryonic-human-kidney-cells (HEK293) were used to transiently express the human alpha-subunit of NaV1.5 channels and the isolated heart of Wistar rats were used. Patch-Clamp technique was deployed to study INa and for electrocardiogram (ECG) evaluation the ex vivo heart preparation in the Langendorff system was applied. RESULTS: The potency of AMD upon peak INa was ∼25x higher in pHe 7.0 when compared to pHe 7.4. Voltage dependence for activation did not differ among all groups. AMD shifted the steady-state inactivation curve to more hyperpolarized potentials, with similar magnitudes for both pHes. The recovery from INa inactivation was delayed in the presence of AMD with similar profile in both pHes. Interestingly, the use-dependent properties of AMD was distinct at pHe 7.0 and 7.4. Finally, AMD was able to change the ex vivo ECG profile, however at pHe 7.0+AMD a larger increase in the RR and QRS duration and in the QT interval when compared to pHe 7.4 was found. CONCLUSIONS: The pharmacological properties of AMD upon NaV1.5 and isolated heart preparation depends on the pHe and its use in vivo during extracellular acidosis may cause a distinct biological response in the heart tissue.


Assuntos
Amiodarona , Animais , Ratos , Humanos , Amiodarona/farmacologia , Antiarrítmicos/farmacologia , Células HEK293 , Ratos Wistar , Canais de Sódio , Concentração de Íons de Hidrogênio , Canal de Sódio Disparado por Voltagem NAV1.5
6.
Basic Clin Pharmacol Toxicol ; 133(5): 565-575, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37675641

RESUMO

Eugenol is an aromatic compound used in the manufacture of medicines, perfumes, cosmetics and as an anaesthetic due to the ability of the drug to block the neuronal isoform of voltage-gated Na+ channels (NaV ). Some arrhythmias are associated with gain of function in the sodium current (INa ) found in cardiomyocytes, and antiarrhythmic sodium channel blockers are commonly used in the clinical practice. This study sought to elucidate the potential mechanisms of eugenol's protection in the arrhythmic model of ouabain-induced arrhythmias in guinea pig heart. Ex vivo arrhythmias were induced using 50 µM of ouabain. The antiarrhythmic properties of eugenol were evaluated in the ex vivo heart preparation and isolated ventricular cardiomyocytes. The compound's effects on cardiac sodium current and action potential using the patch-clamp technique were evaluated. In all, eugenol decreased the ex vivo cardiac arrhythmias induced by ouabain. Furthermore, eugenol showed concentration dependent effect upon peak INa , left-shifted the stationary inactivation curve and delayed the recovery from inactivation of the INa . All these aspects are considered to be antiarrhythmic. Our findings demonstrate that eugenol has antiarrhythmic activity, which may be partially explained by the ability of eugenol to change de biophysical properties of INa of cardiomyocytes.

7.
J Physiol ; 601(18): 3993-3994, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37598297
8.
Toxicol Appl Pharmacol ; 474: 116609, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392997

RESUMO

BACKGROUND: Arrhythmias are one manifestation of the cardiotoxicity that results from doxorubicin (Doxo) administration. Although cardiotoxicity is an anticipated outcome in anticancer therapies, there is still a lack of treatment options available for its effective management. This study sought to evaluate the possible cardioprotective effect of complex d-limonene (DL) plus hydroxypropyl-ß-cyclodextrin (HßDL) during treatment with Doxo, focusing on the arrhythmic feature. METHODS: Cardiotoxicity was induced in Swiss mice with Doxo 20 mg/kg, with 10 mg/kg of HßDL being administered 30 min before the Doxo. Plasma CK-MB and LDH levels were analyzed. Cellular excitability and susceptibility to cardiac and cardiomyocyte arrhythmias were evaluated using in vivo (pharmacological cardiac stress) and in vitro (burst pacing) ECG protocols. Ca2+ dynamics were also investigated. The expression of CaMKII and its activation by phosphorylation and oxidation were evaluated by western blot, and molecular docking was used to analyze the possible interaction between DL and CaMKII. RESULTS: Electrocardiograms showed that administration of 10 mg/kg of HßDL prevented Doxo-induced widening of the QRS complex and QT interval. HßDL also prevented cardiomyocyte electrophysiological changes that trigger cellular arrhythmias, such as increases in action potential duration and variability; decreased the occurrence of delayed afterdepolarizations (DADs) and triggered activities (TAs), and reduced the incidence of arrhythmia in vivo. Ca2+ waves and CaMKII overactivation caused by phosphorylation and oxidation were also decreased. In the in silico study, DL showed potential inhibitory interaction with CaMKII. CONCLUSION: Our results show that 10 mg/kg of ßDL protects the heart against Doxo-induced cardiotoxicity arrhythmias, and that this is probably due to its inhibitory effect on CaMKII hyperactivation.


Assuntos
Cálcio , Ciclodextrinas , Camundongos , Animais , Limoneno/efeitos adversos , Limoneno/metabolismo , Cálcio/metabolismo , Cardiotoxicidade/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Simulação de Acoplamento Molecular , Doxorrubicina/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/prevenção & controle , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos
10.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3775-3788, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37338577

RESUMO

The TASK-1 channel belongs to the two-pore domain potassium channel family. It is expressed in several cells of the heart, including the right atrial (RA) cardiomyocytes and the sinus node, and TASK-1 channel has been implicated in the pathogenesis of atrial arrhythmias (AA). Thus, using the rat model of monocrotaline-induced pulmonary hypertension (MCT-PH), we explored the involvement of TASK-1 in AA. Four-week-old male Wistar rats were injected with 50 mg/kg of MCT to induce MCT-PH and isolated RA function was studied 14 days later. Additionally, isolated RA from six-week-old male Wistar rats were used to explore the ability of ML365, a selective blocker of TASK-1, to modulate RA function. The hearts developed right atrial and ventricular hypertrophy, inflammatory infiltrate and the surface ECG demonstrated increased P wave duration and QT interval, which are markers of MCT-PH. The isolated RA from the MCT animals showed enhanced chronotropism, faster contraction and relaxation kinetics, and a higher sensibility to extracellular acidification. However, the addition of ML365 to extracellular media was not able to restore the phenotype. Using a burst pacing protocol, the RA from MCT animals were more susceptible to develop AA, and simultaneous administration of carbachol and ML365 enhanced AA, suggesting the involvement of TASK-1 in AA induced by MCT. TASK-1 does not play a key role in the chronotropism and inotropism of healthy and diseased RA; however, it may play a role in AA in the MCT-PH model.


Assuntos
Fibrilação Atrial , Hipertensão Pulmonar , Animais , Masculino , Ratos , Átrios do Coração/patologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/patologia , Modelos Teóricos , Monocrotalina/efeitos adversos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA