Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Phys Eng Sci Med ; 45(2): 525-535, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35325377

RESUMO

Several studies have demonstrated statistical and texture analysis abilities to differentiate cancerous from healthy tissue in magnetic resonance imaging. This study developed a method based on texture analysis and machine learning to differentiate prostate findings. Forty-eight male patients with PI-RADS classification and subsequent radical prostatectomy histopathological analysis were used as gold standard. Experienced radiologists delimited the regions of interest in magnetic resonance images. Six different groups of images were used to perform multiple analyses (seven analyses variations). Those analyses were outlined by specialists in urology as those of most significant importance for the classification. Forty texture features were extracted from each image and processed with Random Forest, Support Vector Machine, K-Nearest Neighbors, and Naive Bayes. Those seven analyses variation results were described in terms of area under the ROC curve (AUC), accuracy, F-score, precision and sensitivity. The highest AUC (93.7%) and accuracy (88.8%) were obtained when differentiating the group with both MRI and histopathology positive findings against the group with both negative MRI and histopathology. When differentiating the group with both MRI and histopathology positive findings versus the peripheral image zone group the AUC value was 86.6%. When differentiating the group with negative MRI/positive histopathology versus the group with both negative MRI and histopathology the AUC value was 80.7%. The evaluation of statistical and texture analysis promoted very suggestive indications for future work in prostate cancer suspicious regions. The method is fast for both region of interest selection and classification with machine learning and the result brings original contributions in the classification of different groups of patients. This tool is low-cost, and can be used to assist diagnostic decisions.


Assuntos
Próstata , Neoplasias da Próstata , Teorema de Bayes , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Masculino , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia
2.
PLoS One ; 16(6): e0251783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111131

RESUMO

In this work, we aimed to develop an automatic algorithm for the quantification of total volume and lung impairments in four different diseases. The quantification was completely automatic based upon high resolution computed tomography exams. The algorithm was capable of measuring volume and differentiating pulmonary involvement including inflammatory process and fibrosis, emphysema, and ground-glass opacities. The algorithm classifies the percentage of each pulmonary involvement when compared to the entire lung volume. Our algorithm was applied to four different patients groups: no lung disease patients, patients diagnosed with SARS-CoV-2, patients with chronic obstructive pulmonary disease, and patients with paracoccidioidomycosis. The quantification results were compared with a semi-automatic algorithm previously validated. Results confirmed that the automatic approach has a good agreement with the semi-automatic. Bland-Altman (B&A) demonstrated a low dispersion when comparing total lung volume, and also when comparing each lung impairment individually. Linear regression adjustment achieved an R value of 0.81 when comparing total lung volume between both methods. Our approach provides a reliable quantification process for physicians, thus impairments measurements contributes to support prognostic decisions in important lung diseases including the infection of SARS-CoV-2.


Assuntos
Algoritmos , COVID-19/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Paracoccidioidomicose/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto , Idoso , COVID-19/fisiopatologia , Feminino , Humanos , Pulmão/fisiopatologia , Medidas de Volume Pulmonar/métodos , Masculino , Pessoa de Meia-Idade , Paracoccidioides/isolamento & purificação , Paracoccidioidomicose/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , SARS-CoV-2/isolamento & purificação , Tomografia Computadorizada por Raios X/métodos
3.
J Orthop Surg Res ; 16(1): 283, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910605

RESUMO

BACKGROUND: Platelet-rich plasma (PRP) has been used to favor anterior cruciate ligament (ACL) healing after reconstruction surgeries. However, clinical data are still inconclusive and subjective about PRP. Thus, we propose a quantitative method to demonstrate that PRP produced morphological structure changes. METHODS: Thirty-four patients undergoing ACL reconstruction surgery were evaluated and divided into control group (sixteen patients) without PRP application and experiment group (eighteen patients) with intraoperative application of PRP. Magnetic resonance imaging (MRI) scans were performed 3 months after surgery. We used Matlab® and machine learning (ML) in Orange Canvas® to texture analysis (TA) features extraction. Experienced radiologists delimited the regions of interest (RoIs) in the T2-weighted images. Sixty-two texture parameters were extracted, including gray-level co-occurrence matrix and gray level run length. We used the algorithms logistic regression (LR), naive Bayes (NB), and stochastic gradient descent (SGD). RESULTS: The accuracy of the classification with NB, LR, and SGD was 83.3%, 75%, 75%, respectively. For the area under the curve, NB, LR, and SGD presented values of 91.7%, 94.4%, 75%, respectively. In clinical evaluations, the groups show similar responses in terms of improvement in pain and increase in the IKDC index (International Knee Documentation Committee) and Lysholm score indices differing only in the assessment of flexion, which presents a significant difference for the group treated with PRP. CONCLUSIONS: Here, we demonstrated quantitatively that patients who received PRP presented texture changes when compared to the control group. Thus, our findings suggest that PRP interferes with morphological parameters of the ACL. TRIAL REGISTRATION: Protocol no. CAAE 56164316.6.0000.5411.


Assuntos
Ligamento Cruzado Anterior/patologia , Ligamento Cruzado Anterior/cirurgia , Procedimentos Ortopédicos/métodos , Procedimentos de Cirurgia Plástica/métodos , Plasma Rico em Plaquetas , Adulto , Ligamento Cruzado Anterior/diagnóstico por imagem , Ligamento Cruzado Anterior/fisiopatologia , Feminino , Humanos , Cuidados Intraoperatórios , Modelos Logísticos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Cicatrização
4.
J Venom Anim Toxins Incl Trop Dis ; 26: e20200011, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32952531

RESUMO

BACKGROUND: Neuroimaging strategies are essential to locate, to elucidate the etiology, and to the follow up of brain disease patients. Magnetic resonance imaging (MRI) provides good cerebral soft-tissue contrast detection and diagnostic sensitivity. Inflammatory lesions and tumors are common brain diseases that may present a similar pattern of a cerebral ring enhancing lesion on MRI, and non-enhancing core (which may reflect cystic components or necrosis) leading to misdiagnosis. Texture analysis (TA) and machine learning approaches are computer-aided diagnostic tools that can be used to assist radiologists in such decisions. METHODS: In this study, we combined texture features with machine learning (ML) methods aiming to differentiate brain tumors from inflammatory lesions in magnetic resonance imaging. Retrospective examination of 67 patients, with a pattern of a cerebral ring enhancing lesion, 30 with inflammatory, and 37 with tumoral lesions were selected. Three different MRI sequences and textural features were extracted using gray level co-occurrence matrix and gray level run length. All diagnoses were confirmed by histopathology, laboratorial analysis or MRI. RESULTS: The features extracted were processed for the application of ML methods that performed the classification. T1-weighted images proved to be the best sequence for classification, in which the differentiation between inflammatory and tumoral lesions presented high accuracy (0.827), area under ROC curve (0.906), precision (0.837), and recall (0.912). CONCLUSION: The algorithm obtained textures capable of differentiating brain tumors from inflammatory lesions, on T1-weghted images without contrast medium using the Random Forest machine learning classifier.

5.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200011, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-32227

RESUMO

Neuroimaging strategies are essential to locate, to elucidate the etiology, and to the follow up of brain disease patients. Magnetic resonance imaging (MRI) provides good cerebral soft-tissue contrast detection and diagnostic sensitivity. Inflammatory lesions and tumors are common brain diseases that may present a similar pattern of a cerebral ring enhancing lesion on MRI, and non-enhancing core (which may reflect cystic components or necrosis) leading to misdiagnosis. Texture analysis (TA) and machine learning approaches are computer-aided diagnostic tools that can be used to assist radiologists in such decisions. Methods: In this study, we combined texture features with machine learning (ML) methods aiming to differentiate brain tumors from inflammatory lesions in magnetic resonance imaging. Retrospective examination of 67 patients, with a pattern of a cerebral ring enhancing lesion, 30 with inflammatory, and 37 with tumoral lesions were selected. Three different MRI sequences and textural features were extracted using gray level co-occurrence matrix and gray level run length. All diagnoses were confirmed by histopathology, laboratorial analysis or MRI. Results: The features extracted were processed for the application of ML methods that performed the classification. T1-weighted images proved to be the best sequence for classification, in which the differentiation between inflammatory and tumoral lesions presented high accuracy (0.827), area under ROC curve (0.906), precision (0.837), and recall (0.912). Conclusion: The algorithm obtained textures capable of differentiating brain tumors from inflammatory lesions, on T1-weghted images without contrast medium using the Random Forest machine learning classifier.(AU)


Assuntos
Espectroscopia de Ressonância Magnética , Radiologistas , Neoplasias Encefálicas/diagnóstico , Inflamação/diagnóstico , Neuroimagem
6.
J. venom. anim. toxins incl. trop. dis ; 26: e20200011, 2020. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135130

RESUMO

Neuroimaging strategies are essential to locate, to elucidate the etiology, and to the follow up of brain disease patients. Magnetic resonance imaging (MRI) provides good cerebral soft-tissue contrast detection and diagnostic sensitivity. Inflammatory lesions and tumors are common brain diseases that may present a similar pattern of a cerebral ring enhancing lesion on MRI, and non-enhancing core (which may reflect cystic components or necrosis) leading to misdiagnosis. Texture analysis (TA) and machine learning approaches are computer-aided diagnostic tools that can be used to assist radiologists in such decisions. Methods: In this study, we combined texture features with machine learning (ML) methods aiming to differentiate brain tumors from inflammatory lesions in magnetic resonance imaging. Retrospective examination of 67 patients, with a pattern of a cerebral ring enhancing lesion, 30 with inflammatory, and 37 with tumoral lesions were selected. Three different MRI sequences and textural features were extracted using gray level co-occurrence matrix and gray level run length. All diagnoses were confirmed by histopathology, laboratorial analysis or MRI. Results: The features extracted were processed for the application of ML methods that performed the classification. T1-weighted images proved to be the best sequence for classification, in which the differentiation between inflammatory and tumoral lesions presented high accuracy (0.827), area under ROC curve (0.906), precision (0.837), and recall (0.912). Conclusion: The algorithm obtained textures capable of differentiating brain tumors from inflammatory lesions, on T1-weghted images without contrast medium using the Random Forest machine learning classifier.(AU)


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Encefálicas/classificação , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA