Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Drug Target ; 29(10): 1029-1047, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33729081

RESUMO

Peptic ulcer disease (PUD) is a common condition that is induced by acid and pepsin causing lesions in the mucosa of the duodenum and stomach. The pathogenesis of PUD is a many-sided scenario, which involves an imbalance between protective factors, such as prostaglandins, blood flow, and cell renewal, and aggressive ones, like alcohol abuse, smoking, Helicobacter pylori colonisation, and the use of non-steroidal anti-inflammatory drugs. The standard oral treatment is well established; however, several problems can decrease the success of this therapy, such as drug degradation in the gastric environment, low oral bioavailability, and lack of vectorisation to the target site. In this way, the use of strategies to improve the effectiveness of these conventional drugs becomes interesting. Currently, the use of drug delivery systems is being explored as an option to improve the drug therapy limitations, such as antimicrobial resistance, low bioavailability, molecule degradation in an acid environment, and low concentration of the drug at the site of action. This article provides a review of oral drug delivery systems looking for improving the treatment of PUD.


Assuntos
Antiulcerosos/administração & dosagem , Sistemas de Liberação de Medicamentos , Úlcera Péptica/tratamento farmacológico , Administração Oral , Animais , Antiulcerosos/farmacocinética , Disponibilidade Biológica , Mucosa Gástrica/patologia , Humanos , Úlcera Péptica/etiologia , Úlcera Péptica/patologia , Fatores de Proteção , Fatores de Risco
2.
Crit Rev Microbiol ; 47(1): 79-90, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33156736

RESUMO

Several types of cutaneous fungal infections can affect the population worldwide, such as dermatophytosis, cutaneous candidiasis, onychomycosis, and sporotrichosis. However, oral treatments have pronounced adverse effects, making the topical route an alternative to avoid this disadvantage. On the other hand, currently available pharmaceutical forms designed for topical application, such as gels and creams, do not demonstrate effective retention of biomolecules in the upper layers of the skin. An interesting approach to optimise biomolecules' activity in the skin is the use of nanosystems for drug delivery, especially solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), which in the past decade has shown advantages like increased adhesiveness, great occlusive properties and higher biomolecule deposition in stratum corneum when designed for topical application. Considering the demand for more effective therapeutic alternatives and the promising characteristics of SLN and NLC for topical application, the present study sought to gather studies that investigated the potential of using SLN and NLC for the treatment of cutaneous fungal infections. Studies demonstrated that these nanosystems showed optimisation, mostly, of the effectiveness of biomolecules besides other biopharmaceutical properties, in addition to offering potential occlusion and hydration of the applied region.


Assuntos
Antifúngicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fungos/efeitos dos fármacos , Micoses/tratamento farmacológico , Nanopartículas/química , Dermatopatias/tratamento farmacológico , Animais , Antifúngicos/química , Sistemas de Liberação de Medicamentos/instrumentação , Fungos/fisiologia , Humanos , Micoses/microbiologia , Dermatopatias/microbiologia
3.
Arch Pharm (Weinheim) ; 353(12): e2000146, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32886393

RESUMO

The natural isomers of resveratrol, cis- and trans-resveratrol, are natural phenolic substances synthetized via the shikimate pathway and found in many sources, including grapes, peanuts, blackberries, pistachios, cacao, cranberries, and jackfruits. They have functional and pharmacological properties such as anticarcinogenic, antidiabetic, anti-inflammatory, and cardioprotective activities. The aim of this article is to review the data published on resveratrol and its isomers, and their biosynthesis in plants, food sources, health and toxic effects, and the excretion of their metabolites. Due to its contribution to the promotion of human health, it is convenient to gather more knowledge about its functional properties, food sources, and the interactions with the human body during the processes of eating, digestion, absorption, biotransformation, and excretion, to combine this information to improve the understanding of these substances.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Fármacos Cardiovasculares/farmacologia , Alimentos , Hipoglicemiantes/farmacologia , Plantas/metabolismo , Resveratrol/farmacologia , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/toxicidade , Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/toxicidade , Disponibilidade Biológica , Biotransformação , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/toxicidade , Vias de Eliminação de Fármacos , Absorção Gastrointestinal , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/toxicidade , Isomerismo , Resveratrol/metabolismo , Resveratrol/farmacocinética , Resveratrol/toxicidade
4.
J Ethnopharmacol ; 233: 1-12, 2019 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-30594606

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The number of bacterial strains that are resistant to multiple conventional antimicrobial agents is increasing. In this context, natural products have been widely used as a strategy to treat diseases caused by bacteria. Infections by Helicobacter pylori have attracted attention because they are directly related to severe gastric medical conditions. Casearia sylvestris Swartz, popularly known as guaçatonga, is largely employed to treat gastric disorders in Brazilian folk medicine. This plant species has aroused much interest mainly because it displays anti-inflammatory activity and can act as an antiulcer agent. AIM OF THE STUDY: To evaluate the in vitro and in vivo anti-H. pylori action of C. sylvestris leaf derivatives incorporated or not in a nanostructured drug delivery system. MATERIALS AND METHODS: The essential oil (obtained by hydrodistillation) and ethanolic extract (obtained by maceration) were obtained from C. sylvestris leaves. The ethanolic extract was submitted to fractionation through solid phase extraction and column chromatography, to yield the ethanolic fractions. Hydrolyzed casearin J was achieved by submitting isolated casearin J to acid hydrolysis. The derivatives were chemically characterized by nuclear magnetic resonance (NMR), gas chromatography (GC), and gas chromatography-mass spectrometry (GC-MS) analyses. A nanostructured lipid system was used as drug delivery system. To assess the in vitro antibacterial activity of C. sylvestris leaf essential oil, ethanolic extract, and derivatives, microdilution, biofilm, and time-kill assays were performed against H. pylori ATCC 43504. Finally, the in vivo action was investigated by employing male Wistar rats experimentally infected with H. pylori. RESULTS: Many C. sylvestris leaf derivatives presented significant in vitro activity against H. pylori. Among the derivatives, fraction 2 (F2) was the most effective. In vivo tests showed that both the ethanolic extract and F2 decreased the ulcerative lesion size, but only the ethanolic extract eradicated H. pylori from the gastric lesions. Incorporation of plant derivatives in nanostructured lipid system blunted the in vitro action, as demonstrated by the microdilution assay. However, this incorporation improved the ethanolic extract activity against biofilms. CONCLUSION: C. sylvestris leaf derivatives are effective against H. pylori both in vitro and in vivo. According to phytochemical analyses, these derivatives are rich in terpenoids, which could be related to the anti-H. pylori action. Synergism could also underlie C. sylvestris efficacy judging from the fact that the sub-fractions and isolated compounds had lower activity than the extract. Incorporation in a nanostructured lipid system did not improve the activity of the compounds in our in vivo protocol.


Assuntos
Antibacterianos , Antiulcerosos , Casearia , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Óleos Voláteis , Extratos Vegetais , Úlcera Gástrica/tratamento farmacológico , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antiulcerosos/química , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Brasil , Helicobacter pylori/crescimento & desenvolvimento , Masculino , Medicina Tradicional , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta , Ratos Wistar , Terpenos/análise , Terpenos/farmacologia , Terpenos/uso terapêutico
5.
Int J Nanomedicine ; 13: 1179-1213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520143

RESUMO

Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms.


Assuntos
Biofilmes/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Humanos , Lipídeos/química , Lipossomos/administração & dosagem , Lipossomos/química , Nanopartículas Metálicas/química , Nanopartículas/administração & dosagem , Nanotecnologia , Polímeros/química
6.
Int J Mol Sci ; 17(8)2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27517903

RESUMO

BACKGROUND: The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. OBJECTIVE: The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. METHODS: The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. RESULTS: According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 µg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 µg/mL). The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 µg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred at a concentration of 10× MIC. The values of the IC50 for the EO were 96.6 µg/mL (HepG-2) and 33.1 µg/mL (MRC-5). CONCLUSION: As a major virulence mechanism is attributed to these types of infections, the EO is a promising compound to inhibit Candida species, especially considering its action against biofilm.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Cymbopogon/química , Óleos Voláteis/farmacologia , Antifúngicos/química , Cromatografia Gasosa-Espectrometria de Massas , Hifas/efeitos dos fármacos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Óleos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA