Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Interface Focus ; 11(4): 20200064, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34123354

RESUMO

The study of long non-coding RNAs (lncRNAs), greater than 200 nucleotides, is central to understanding the development and progression of many complex diseases. Unlike proteins, the functionality of lncRNAs is only subtly encoded in their primary sequence. Current in-silico lncRNA annotation methods mostly rely on annotations inferred from interaction networks. But extensive experimental studies are required to build these networks. In this work, we present a graph-based machine learning method called FGGA-lnc for the automatic gene ontology (GO) annotation of lncRNAs across the three GO subdomains. We build upon FGGA (factor graph GO annotation), a computational method originally developed to annotate protein sequences from non-model organisms. In the FGGA-lnc version, a coding-based approach is introduced to fuse primary sequence and secondary structure information of lncRNA molecules. As a result, lncRNA sequences become sequences of a higher-order alphabet allowing supervised learning methods to assess individual GO-term annotations. Raw GO annotations obtained in this way are unaware of the GO structure and therefore likely to be inconsistent with it. The message-passing algorithm embodied by factor graph models overcomes this problem. Evaluations of the FGGA-lnc method on lncRNA data, from model and non-model organisms, showed promising results suggesting it as a candidate to satisfy the huge demand for functional annotations arising from high-throughput sequencing technologies.

2.
Sci Rep ; 8(1): 7757, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773825

RESUMO

The GO-Cellular Component (GO-CC) ontology provides a controlled vocabulary for the consistent description of the subcellular compartments or macromolecular complexes where proteins may act. Current machine learning-based methods used for the automated GO-CC annotation of proteins suffer from the inconsistency of individual GO-CC term predictions. Here, we present FGGA-CC+, a class of hierarchical graph-based classifiers for the consistent GO-CC annotation of protein coding genes at the subcellular compartment or macromolecular complex levels. Aiming to boost the accuracy of GO-CC predictions, we make use of the protein localization knowledge in the GO-Biological Process (GO-BP) annotations to boost the accuracy of GO-CC prediction. As a result, FGGA-CC+ classifiers are built from annotation data in both the GO-CC and GO-BP ontologies. Due to their graph-based design, FGGA-CC+ classifiers are fully interpretable and their predictions amenable to expert analysis. Promising results on protein annotation data from five model organisms were obtained. Additionally, successful validation results in the annotation of a challenging subset of tandem duplicated genes in the tomato non-model organism were accomplished. Overall, these results suggest that FGGA-CC+ classifiers can indeed be useful for satisfying the huge demand of GO-CC annotation arising from ubiquitous high throughout sequencing and proteomic projects.


Assuntos
Arabidopsis/metabolismo , Biologia Computacional/métodos , Drosophila melanogaster/metabolismo , Ontologia Genética , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Solanum lycopersicum/metabolismo , Animais , Bases de Dados de Proteínas , Anotação de Sequência Molecular , Proteínas/análise , Proteômica , Software
3.
PLoS One ; 11(1): e0146986, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26771463

RESUMO

As volume of genomic data grows, computational methods become essential for providing a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods based on hierarchical ensemble classification techniques are particularly interesting when interpretability of annotation results is a main concern. In these methods, raw GO-term predictions computed by base binary classifiers are leveraged by checking the consistency of predefined GO relationships. Both formal leveraging strategies, with main focus on annotation precision, and heuristic alternatives, with main focus on scalability issues, have been described in literature. In this contribution, a factor graph approach to the hierarchical ensemble formulation of the automated GO annotation problem is presented. In this formal framework, a core factor graph is first built based on the GO structure and then enriched to take into account the noisy nature of GO-term predictions. Hence, starting from raw GO-term predictions, an iterative message passing algorithm between nodes of the factor graph is used to compute marginal probabilities of target GO-terms. Evaluations on Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster protein sequences from the GO Molecular Function domain showed significant improvements over competing approaches, even when protein sequences were naively characterized by their physicochemical and secondary structure properties or when loose noisy annotation datasets were considered. Based on these promising results and using Arabidopsis thaliana annotation data, we extend our approach to the identification of most promising molecular function annotations for a set of proteins of unknown function in Solanum lycopersicum.


Assuntos
Drosophila melanogaster/genética , Ontologia Genética , Algoritmos , Animais , Arabidopsis/genética , Biologia Computacional , Solanum lycopersicum/genética , Saccharomyces cerevisiae/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA