Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 462: 114873, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38266776

RESUMO

Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc), which leads to motor and non-motor symptoms (NMS). NMS can appear many years before the classical motor symptoms and are associated with the neurodegeneration of several nuclei; in this work, we highlight the neurodegeneration of Locus coeruleus (LC) in PD. The aim was to investigate the effects of depleting SNpc and LC catecholaminergic neurons on behavioral and neurobiological endpoints. Here we used 6-hydroxydopamine (6-OHDA) in order to induced neurotoxic damage in three independent experimental groups: SNpc lesion group, which 6-OHDA was injected into CPu (CPu-6-OHDA), LC lesion group, which 6-OHDA was injected directly on LC to selectively caused a damage on this nucleus (LC-6-OHDA), and the combined SNpc and LC lesion group (CL-6-OHDA). Next, the behavioral studies were performed using the Morris water maze (MWM), open field (OF), and elevated plus maze (EPM). After stereotaxic surgeries, the animals showed a loss of 67% and 77% of Tyrosine hydroxylase (TH) reactive neurons in the SNpc and LC, respectively. The behavioral analysis showed the anxiety-like behavior in CL-6-OHDA group in the EPM test; in the MWM test, the combined lesions (CL-6-OHDA) showed an impairment in memory acquisition and spatial memory; and no changes were observed in locomotor activity in all the tests. Furthermore, our investigation demonstrating the effects of depleting SN and LC catecholaminergic neurons on behavioral and neurobiological parameters. All these data together lead us to believe that a bilateral PD model including a LC bilateral degeneration is potentially a more accurate model to evaluate the NMS in the pathological development of the disease in rodents.


Assuntos
Doença de Parkinson , Animais , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Roedores , Locus Cerúleo/metabolismo , Neurônios Dopaminérgicos , Substância Negra/metabolismo , Modelos Animais de Doenças
2.
Adv Biol (Weinh) ; 6(8): e2200002, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35521969

RESUMO

The effects of neuroinvasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) become clinically relevant due to the numerous neurological symptoms observed in Corona Virus Disease 2019 (COVID-19) patients during infection and post-COVID syndrome or long COVID. This study reports the biofabrication of a 3D bioprinted neural-like tissue as a proof-of-concept platform for a more representative study of SARS-CoV-2 brain infection. Bioink is optimized regarding its biophysical properties and is mixed with murine neural cells to construct a 3D model of COVID-19 infection. Aiming to increase the specificity to murine cells, SARS-CoV-2 is mouse-adapted (MA-SARS-CoV-2) in vitro, in a protocol first reported here. MA-SARS-CoV-2 reveals mutations located at the Orf1a and Orf3a domains and is evolutionarily closer to the original Wuhan SARS-CoV-2 strain than SARS-CoV-2 used for adaptation. Remarkably, MA-SARS-CoV-2 shows high specificity to murine cells, which present distinct responses when cultured in 2D and 3D systems, regarding cell morphology, neuroinflammation, and virus titration. MA-SARS-CoV-2 represents a valuable tool in studies using animal models, and the 3D neural-like tissue serves as a powerful in vitro platform for modeling brain infection, contributing to the development of antivirals and new treatments for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Encéfalo , COVID-19/complicações , Humanos , Camundongos , Neurônios , Síndrome de COVID-19 Pós-Aguda
3.
Phytother Res ; 35(9): 4988-5006, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33928690

RESUMO

The SARS-CoV-2 virus, responsible for COVID-19, spread rapidly worldwide and became a pandemic in 2020. In some patients, the virus remains in the respiratory tract, causing pneumonia, respiratory failure, acute respiratory distress syndrome (ARDS), and sepsis, leading to death. Natural flavonoids (aglycone and glycosides) possess broad biological activities encompassing antiinflammatory, antiviral, antitumoral, antiallergic, antiplatelet, and antioxidant effects. While many studies have focused on the effects of natural flavonoids in experimental models, reports based on clinical trials are still insufficient. In this review, we highlight the effects of flavonoids in controlling pulmonary diseases, particularly the acute respiratory distress syndrome, a consequence of COVID-19, and their potential use in coronavirus-related diseases. Furthermore, we also focus on establishing a relationship between biological potential and chemical aspects of related flavonoids and discuss several possible mechanisms of action, pointing out some possible effects on COVID-19.


Assuntos
COVID-19 , Flavonoides , Lesão Pulmonar , COVID-19/complicações , Flavonoides/farmacologia , Humanos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/virologia , Pandemias
4.
Cell Biol Int ; 45(7): 1459-1467, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33675269

RESUMO

Although the existence of the renin-angiotensin system (RAS) in the bone marrow is clear, the exact role of this system in hematopoiesis has not yet been fully characterized. Here the direct role of angiotensin II (AngII) in hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), granulocyte/monocyte progenitors (GMPs), and megakaryocytes/erythroid progenitors (MEPs), using a system of coculture with stromal S17 cells. Flow cytometry analysis showed that AngII increases the percentage of HSC and GMP, while reducing CMP with no effect on MEP. According to these data, AngII increased the total number of mature Gr-1+ /Mac-1+ cells without changes in Terr119+ cells. AngII does not induce cell death in the population of LSK cells. In these populations, treatment with AngII decreases the expression of Ki67+ protein with no changes in the Notch1 expression, suggesting a role for AngII on the quiescence of immature cells. In addition, exposure to AngII from murine bone marrow cells increased the number of CFU-GM and BFU-E in a clonogenic assay. In conclusion, our data showed that AngII is involved in the regulation of hematopoiesis with a special role in HSC, suggesting that AngII should be evaluated in coculture systems, especially in cases that require the expansion of these cells in vitro, still a significant challenge for therapeutic applications in humans.


Assuntos
Angiotensina II/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Animais , Diferenciação Celular , Linhagem Celular , Técnicas de Cocultura , Hematopoese , Células-Tronco Hematopoéticas/citologia , Camundongos , Células Estromais/metabolismo
5.
Int J Mol Sci ; 20(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31717698

RESUMO

Platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC) are orthobiologic therapies considered as an alternative to the current therapies for muscle, bone and cartilage. Different formulations of biomaterials have been used as carriers for PRP and BMAC in order to increase regenerative processes. The most common biomaterials utilized in conjunction with PRP and BMAC clinical trials are organic scaffolds and natural or synthetic polymers. This review will cover the combinatorial strategies of biomaterial carriers with PRP and BMAC for musculoskeletal conditions (MsCs) repair and regeneration in clinical trials. The main objective is to review the therapeutic use of PRP and BMAC as a treatment option for muscle, bone and cartilage injuries.


Assuntos
Materiais Biocompatíveis/farmacologia , Medicina Regenerativa/métodos , Células da Medula Óssea/fisiologia , Ensaios Clínicos como Assunto , Humanos , Plasma Rico em Plaquetas/fisiologia
6.
J Control Release ; 237: 42-9, 2016 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-27374631

RESUMO

Hydrogels are an especially appealing class of biomaterials for gene delivery vehicles as they can be introduced into the body with minimally invasive procedures and are often applied in tissue engineering and regenerative medicine strategies. In this study, we show for the first time the use of an injectable alginate hydrogel for controlled delivery of lentivectors in the skeletal muscle of murine hindlimb. We propose to alter the release rates of lentivectors through manipulation of the molecular weight distribution of alginate hydrogels. The release of lentivector was tested using two different ratios of low and high molecular weight (MW) alginate polymers (75/25 and 25/75 low/high MW). The interdependency of lentivector release rate and alginate degradation rate was assessed in vitro. Lentivector-loaded hydrogels maintained transduction potential for up to one week in vitro as demonstrated by the continual transduction of HEK-293T cells. Injection of lentivector-loaded hydrogel in vivo led to a sustained level of transgene expression for more than two months while minimizing the copies of lentivirus genome inserted into the genome of murine skeletal muscle cells. This strategy of spatiotemporal control of lentivector delivery from alginate hydrogels may provide a versatile tool to combine gene therapy and biomaterials for applications in regenerative medicine.


Assuntos
Alginatos/química , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Lentivirus/genética , Músculo Esquelético/metabolismo , Transdução Genética/métodos , Alginatos/administração & dosagem , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Feminino , Vetores Genéticos/genética , Ácido Glucurônico/administração & dosagem , Ácido Glucurônico/química , Células HEK293 , Ácidos Hexurônicos/administração & dosagem , Ácidos Hexurônicos/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/administração & dosagem , Injeções , Camundongos , Camundongos Endogâmicos BALB C , Engenharia Tecidual , Transgenes
7.
FASEB J ; 30(1): 477-86, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26443826

RESUMO

Cell-based approaches for bone formation require instructional cues from the surrounding environment. As an alternative to pharmacological strategies or transplanting single cell populations, one approach is to coimplant populations that can establish a new vasculature and differentiate to bone-forming osteoblasts. Mesenchymal stem/stromal cells (MSCs) possess osteogenic potential and produce numerous angiogenic growth factors. Endothelial colony-forming cells (ECFCs) are a subpopulation of endothelial progenitor cells capable of vasculogenesis in vivo and may provide endogenous cues to support MSC function. We investigated the contribution of the carrier biophysical properties to instruct entrapped human MSCs and ECFCs to simultaneously promote their osteogenic and proangiogenic potential. Compared with gels containing MSCs alone, fibrin gels engineered with increased compressive stiffness simultaneously increased the osteogenic and proangiogenic potential of entrapped cocultured cells. ECFCs produced bone morphogenetic protein-2 (BMP-2), a potent osteoinductive molecule, and increases in BMP-2 secretion correlated with gel stiffness. Coculture of MSCs with ECFCs transduced to knockdown BMP-2 production abrogated the osteogenic response to levels observed with MSCs alone. These results demonstrate that physical properties of engineered hydrogels modulate the function of cocultured cells in the absence of inductive cues, thus increasing the translational potential of coimplantation to speed bone formation and repair.


Assuntos
Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Células Progenitoras Endoteliais/metabolismo , Fibrina/farmacologia , Humanos , Hidrogéis/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos
8.
Cell Calcium ; 56(2): 51-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24882212

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) has been identified as an important modulator of Ca(2+) release from the endo-lysosomal system in a variety of cells by a new and ubiquitous class of endo-lysosomal ion channels known as the two-pore channels (TPCs). However, the role of TPCs in NAADP action in smooth muscle is not known. In the present work, we investigated the effects of NAADP in gastric smooth muscle cells and its ability to release Ca(2+) by TPCs. We show that Ca(2+) signals mediated by NAADP were inhibited by disrupting Ca(2+) handling by either acidic organelles (using bafilomycin A1) or the Endoplasmic Reticulum (using thapsigargin, ryanodine or 2-APB). Transcripts for endogenous TPC1 and TPC2 were readily detected and recombinant TPCs localized to the endosomes and/or lysosomes. Overexpression of wild-type TPCs but not pore mutants enhanced NAADP-mediated cytosolic Ca(2+) signals. Desensitizing the NAADP pathway inhibited Ca(2+)-responses to extracellular stimulation with carbachol but not ATP. Taken together, these results indicate that NAADP likely induces Ca(2+) release from the endolysosomal system through TPCs which is subsequently amplified via the ER in an agonist-specific manner. Thus, we suggest a second messenger role for NAADP in smooth muscle cells.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , NADP/análogos & derivados , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , NADP/farmacologia , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estômago/citologia
9.
J Biol Chem ; 286(32): 27875-81, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21610076

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca(2+)-mobilizing messenger that in many cells releases Ca(2+) from the endolysosomal system. Recent studies have shown that NAADP-induced Ca(2+) mobilization is mediated by the two-pore channels (TPCs). Whether NAADP acts as a messenger in astrocytes is unclear, and downstream functional consequences have yet to be defined. Here, we show that intracellular delivery of NAADP evokes Ca(2+) signals from acidic organelles in rat astrocytes and that these signals are potentiated upon overexpression of TPCs. We also show that NAADP increases acidic vesicular organelle formation and levels of the autophagic markers, LC3II and beclin-1. NAADP-mediated increases in LC3II levels were reduced in cells expressing a dominant-negative TPC2 construct. Our data provide evidence that NAADP-evoked Ca(2+) signals mediated by TPCs regulate autophagy.


Assuntos
Astrócitos/metabolismo , Autofagia/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , NADP/análogos & derivados , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Astrócitos/citologia , Proteína Beclina-1 , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Células Cultivadas , Humanos , NADP/genética , NADP/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA