Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Microbiol ; 9: 2463, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459723

RESUMO

The coli surface antigen 26 (CS26) of enterotoxigenic Escherichia coli (ETEC) had been described as a putative adhesive pilus based on the partial sequence of the crsH gene, detected in isolates from children with diarrhea in Egypt. However, its production and activity as adherence determinant has not been experimentally addressed. The crsH was identified as a homolog of genes encoding structural subunits of ETEC colonization factors (CFs) CS12, CS18, and CS20. These CFs, along with the recently discovered CS30, belong to the γ2 family of pili assembled by the chaperone-usher pathway (CU pili). Further, the complete CS26 locus, crsHBCDEFG, was described in an O141 ETEC strain (ETEC 100664) obtained from a diarrhea case in The Gambia, during the Global Enterics Multicenter Study. Here, we report that CS26 is a pilus of ∼10 nm in diameter, with the capacity to increase the cell adherence of the non-pathogenic strain E. coli DH10B. As for other related pili, production of CS26 seems to be regulated by phase variation. Deletion of crsHBCDEFG in ETEC 100664 significantly decreased its adherence capacity, which was recovered by in trans complementation. Furthermore, CrsH was cross-recognized by polyclonal antibodies directed against the major structural subunit of CS20, CsnA, as determined by Western blotting and immunogold labeling. ETEC CS26+ strains were found to harbor the heat-labile enterotoxin only, within three different sequence types of phylogroups A and B1, the latter suggesting acquisition through independent events of horizontal transfer. Overall, our results demonstrate that CS26 is an adhesive pilus of human ETEC. In addition, cross-reactivity with anti-CsnA antibodies indicate presence of common epitopes in γ2-CFs.

3.
Artigo em Inglês | MEDLINE | ID: mdl-28111618

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrhea worldwide. Among the 25 different ETEC adhesins, 22 are known as "colonization factors" (CFs), of which 17 are assembled by the chaperone-usher (CU) mechanism. Currently, there is no preventive therapy against ETEC, and CFs have been proposed as components for vaccine development. However, studies of diarrhea-causing ETEC strains worldwide indicate that between 15 and 50% of these are negative for known CFs, hindering the selection of the most widespread structures and suggesting that unknown adhesins remain to be identified. Here, we report the result of a comprehensive analysis of 35 draft genomes of ETEC strains which do not carry known adhesin genes; our goal was to find new CU pili loci. The phylogenetic profiles and serogroups of these strains were highly diverse, a majority of which produced only the heat-labile toxin. We identified 10 pili loci belonging to CU families ß (1 locus), γ2 (7 loci), κ (1 locus), and π (1 locus), all of which contained the required number of open reading frames (ORFs) to encode functional structures. Three loci were variants of previously-known clusters, three had been only-partially described, and four are novel loci. Intra-loci genetic variability identified would allow the synthesis of up to 14 different structures. Clusters of putative γ2-CU pili were most common (23 strains), followed by putative ß-CU pili (12 strains), which have not yet been fully characterized. Overall, our findings significantly increase the number of ETEC adhesion genes associated with human infections.


Assuntos
Adesinas Bacterianas/genética , Escherichia coli Enterotoxigênica/genética , Proteínas de Escherichia coli/genética , Fímbrias Bacterianas/genética , Loci Gênicos , Chaperonas Moleculares/genética , Biologia Computacional , Genoma Bacteriano
4.
Curr Top Microbiol Immunol ; 379: 181-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24407776

RESUMO

Cholera is still a major public health problem. The underlying bacterial pathogen Vibrio cholerae (V. cholerae) is evolving and some of its mutations have set the stage for outbreaks. After V. cholerae acquired the mobile elements VSP I & II, the El Tor pandemic began and spread across the tropics. The replacement of the O1 serotype encoding genes with the O139 encoding genes triggered an outbreak that swept across the Indian subcontinent. The sxt element generated a third selective sweep and most recently a fourth sweep was associated with the exchange of the El Tor ctx allele for a classical ctx allele in the El Tor background. In Kenya, variants of this fourth selective sweep have differentiated and become endemic residing in and emerging from environmental reservoirs. On a local level, studies in Bangladesh have revealed that outbreaks may arise from a nonrandom subset of the genetic lineages in the environment and as the population of the pathogen expands, many novel mutations may be found increasing the amount of genetic variation, a phenomenon known as a founder flush. In Haiti, after the initial invasion and expansion of V. cholerae in 2010, a second outbreak occurred in the winter of 2011-2012 driven by natural selection of specific mutations.


Assuntos
Cólera/epidemiologia , Surtos de Doenças , Vibrio cholerae , Cólera/microbiologia , Cólera/transmissão , Variação Genética , Haiti/epidemiologia , Humanos , Quênia/epidemiologia , Vibrio cholerae/classificação , Vibrio cholerae/genética
5.
Infect Immun ; 80(8): 2791-801, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22645287

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea, mainly in developing countries. Although there are 25 different ETEC adhesins described in strains affecting humans, between 15% and 50% of the clinical isolates from different geographical regions are negative for these adhesins, suggesting that additional unidentified adhesion determinants might be present. Here, we report the discovery of Coli Surface Antigen 23 (CS23), a novel adhesin expressed by an ETEC serogroup O4 strain (ETEC 1766a), which was negative for the previously known ETEC adhesins, albeit it has the ability to adhere to Caco-2 cells. CS23 is encoded by an 8.8-kb locus which contains 9 open reading frames (ORFs), 7 of them sharing significant identity with genes required for assembly of K88-related fimbriae. This gene locus, named aal (adhesion-associated locus), is required for the adhesion ability of ETEC 1766a and was able to confer this adhesive phenotype to a nonadherent E. coli HB101 strain. The CS23 major structural subunit, AalE, shares limited identity with known pilin proteins, and it is more closely related to the CS13 pilin protein CshE, carried by human ETEC strains. Our data indicate that CS23 is a new member of the diverse adhesin repertoire used by ETEC strains.


Assuntos
Adesinas Bacterianas/metabolismo , Antígenos de Bactérias/metabolismo , Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Antígenos de Bactérias/genética , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Aderência Bacteriana/fisiologia , Sequência de Bases , Células CACO-2 , Escherichia coli Enterotoxigênica/genética , Proteínas de Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Mutação , Filogenia
6.
Emerg Infect Dis ; 17(4): 699-701, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21470464

RESUMO

Altered El Tor Vibrio cholerae O1, with classical cholera toxin B gene, was isolated from 16 patients with severe diarrhea at St. Mark's Hospital, Arbonite, Haiti, <3 weeks after onset of the current cholera epidemic. Variable-number tandem-repeat typing of 187 isolates showed minimal diversity, consistent with a point source for the epidemic.


Assuntos
Cólera/microbiologia , Vibrio cholerae O1/classificação , Vibrio cholerae O1/genética , Técnicas de Tipagem Bacteriana , Fezes/microbiologia , Variação Genética , Genótipo , Haiti , Humanos , Tipagem de Sequências Multilocus , Sequências de Repetição em Tandem/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA