Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(37): 56579-56591, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35338463

RESUMO

Urban afforestation can mitigate the effects of air pollution, but the suitability of plant species for this purpose needs to be determined according to pollution intensity and climate change. The goal of this study was to evaluate the sensitivity of different phytotoxicity endpoints using two native Brazilian plant species as models, Aroeira (Schinus terebinthifolius) and Cuvatã (Cupania vernalis). The sensitivity parameters evaluated could help in selecting the most air-pollution-tolerant plant species for use in urban afforestation programs. The two plant species were exposed, in a greenhouse, to the combustion gases of a diesel engine for 120 days, with daily intermittent gas exposure. Every 30 days, leaf injury (chlorosis and necrosis), biomass, and physiological/biochemical parameters (proteins, chlorophyll, and peroxidase enzyme activity) were evaluated for both plant species. For the two selected species, the endpoints studied can be ranked according to their sensitivity (or inversely the tolerance) to diesel oil combustion gases in the following order: peroxidase > biomass ≈ chlorophyll > protein > leaf injury. The endpoint responses of higher plants can be used to assess the suitability of particular plant species for use in urban afforestation areas with relatively intense vehicle traffic.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Alcaloides , Anacardiaceae , Poluentes Atmosféricos/análise , Alcaloides/farmacologia , Anacardiaceae/metabolismo , Brasil , Clorofila/metabolismo , Gases/metabolismo , Peroxidases/metabolismo , Plantas/metabolismo , Sapindaceae
2.
Environ Pollut ; 265(Pt A): 114675, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806393

RESUMO

Urban afforestation can mitigate the effects of air pollution by acting as a sink for atmospheric emissions, but these emissions (e.g., combustion gases from diesel engines) can be a precursor of structural and physiological changes in higher plant species, which could compromise the success of afforestation projects. In this study, Guabiroba (Campomanesia xanthocarpa O. Berg.) plants were exposed in greenhouses to combustion gases emitted by a diesel engine over 120 days, with daily intermittent gas exposure. Every 30 days, leaf injury (chlorosis and necrosis), plant biomass and physiological/biochemical parameters (proteins, chlorophyll and peroxidase enzyme activity) were evaluated. The data obtained were used to construct a hierarchy of the sensitivity (and inversely, of the resistance or tolerance) of this higher plant species to the diesel oil combustion gases: peroxidase > biomass ≈ chlorophyll > protein > leaf injury. Variations in these parameters could be used for the early diagnosis of plant stress or as a marker for stress tolerance in trees. In the first case, a sensitive species could be used for the phytomonitoring of air quality and in the second case the lack of significant variations in these parameters would indicator tolerance of the plant species to air pollution. The results showed that Guabiroba, a plant native to the Atlantic forest, is sensitive to air pollution and could therefore be used for air quality monitoring, since all parameters analyzed were affected by the polluted air.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Monitoramento Ambiental , Gasolina , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA