Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Chromatogr A ; 1720: 464783, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38492290

RESUMO

This study proposes a new alternative for template removal from molecularly imprinted polymers by heat activated persulfate. It is known that trace amounts of template molecule remains in the polymer network after extraction by current methodologies leading to bleeding and incomplete removal of template which could compromise final determination of target analytes especially in trace analysis. A previously developed molecularly imprinted polymer specially designed for Coenzyme Q10 (CoQ10) extraction was employed as a model to test this template elimination approach. This polymer is based on methacrylic acid and ethylene glycol dimethylacrylate as monomers and Coenzyme Q0 as template. This coenzyme has the same quinone group as the CoQ10. Selectivity was analyzed comparing the recovery of CoQ10 and ubichromenol, a CoQ10 related substance. Chemical degradation using heat-activated persulfate allows the elimination of the template molecule with a high level of efficiency, being a simple and ecological methodology, yielding a polymer that exhibits comparable selectivity and imprinting effect with respect to traditional extraction methods.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Ubiquinona , Temperatura Alta , Polímeros/química , Impressão Molecular/métodos
2.
Pharmaceutics ; 15(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37631251

RESUMO

BACKGROUND: Ursodeoxycholic acid (UDCA) is a therapeutic agent used for the treatment of cholestatic hepatobiliary diseases in pediatric patients. It is a bile acid that presents high lipophilicity, and it belongs to Class II of the Biopharmaceutical Classification System (BCS), which exhibits low water solubility and high intestinal permeability, which leads to poor oral absorption. The objective of this work was to design and optimize UDCA nanosuspensions by means of the precipitation-ultrasonication method to improve the solubility, dissolution, and oral bioavailability of UDCA. METHODS: A three-level, three-factor Box-Behnken design was used to optimize formulation variables and obtain uniform, small-particle-size UDCA nanosuspensions. The independent variables were: stabilizer percentage (X1), amplitude (X2), and sonication time (X3), and the dependent variable was the particle size (Y1). In the precipitation-ultrasonication method, UDCA was dissolved in acetone:PEG 400 (1:1 v/v) and quickly incorporated into the antisolvent (pre-cooled aqueous dispersion of HPMC E-15 0.3%), by means of intense sonication at 50 W for 5 min, controlling temperature through an ice water bath. The lyophilization efficacy was evaluated by means of a cryoprotective efficacy test, working with 10% maltose at -80 °C. The nanosuspensions were characterized by dynamic light scattering (DLS), X-ray diffraction, and scanning electron microscopy (SEM). The physicochemical stability was determined at 25 °C and 4 °C at 7, 14, 30, and 60 days, and the UDCA content was analyzed via HPLC-UV. An in vitro dissolution assay and an oral bioavailability study were performed in male Wistar rats. RESULTS: A significant impact was achieved in the optimized nanosuspension with 0.3% (stabilizer), 50 W (amplitude), and 5 min (sonication time), with a particle size of 352.4 nm, PDI of 0.11, and zeta potential of -4.30 mV. It presented adequate physicochemical stability throughout the study and the UDCA content was between 90% and 110%. In total, 86% of UDCA was dissolved in the in vitro dissolution test. The relative oral bioavailability was similar without significant statistical differences when comparing the lyophilized nanosuspension and the commercial tablet, the latter presenting a more erratic behavior. The pharmacokinetic parameters of the nanosuspension and the commercial tablet were Tmax (1.0 ± 0.9 h vs. 2.0 ± 0.8 h, respectively), Cmax (0.558 ± 0.118 vs. 0.366 ± 0.113 µM, respectively), ΔCmax (0.309 ± 0.099 vs. 0.232 ± 0.056, respectively), AUC (4.326 ± 0.471 vs. 2.188 ± 0.353 µg/mL.h, respectively, p < 0.02), and IAUC0-24h (2.261 ± 0.187 µg/mL.h vs. 1.924 ± 0.440 µg/mL.h, respectively). CONCLUSIONS: The developed nanosuspension presents an appropriate dosage and administration for pediatric patients. On the other hand, it exhibits an adequate absorption and UDCA oral bioavailability.

3.
Biochim Biophys Acta Gen Subj ; 1867(9): 130426, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451477

RESUMO

BACKGROUND: Increasing evidence suggests that glaucoma affects the ocular surface. We aimed to investigate the cellular mechanisms underlying the glaucoma-associated corneal alterations in an animal model. METHODS: Wistar rats underwent the cauterization of two episcleral veins of the left eye to elevate the intraocular pressure (ipsilateral, G-IL). Control animals received a sham procedure (C-IL). Contralateral eyes did not receive any procedure (G-CL or C-CL). Enzymes related to the redox status, oxidative damage to macromolecules, and inflammatory markers were assessed in corneal lysates. RESULTS: Compared to C-IL, NOX4, NOX2, and iNOS expression was increased in G-IL (68%, p < 0.01; 247%, p < 0.01; and 200%, p < 0.001, respectively). We found an increase in SOD activity in G-IL (60%, p < 0.05). The GSH/GSSG ratio decreased in G-IL (80%, p < 0.05), with a decrease in GR activity (40%, p < 0.05). G-IL displayed oxidative (90%, p < 0.01) and nitrosative (40%, p < 0.05) protein damage, and enhanced lipid peroxidation (100%, p < 0.01). G-IL group showed an increased in CD45, CD68 and F4/80 expression (50%, p < 0.05; 190%, p < 0.001 and 110%, p < 0.05, respectively). G-CL displayed a higher expression of Nrf2 (60%, p < 0.001) and increased activity of SOD, CAT, and GPx (60%, p < 0.05; 90%, p < 0.01; and 50%, p < 0.05, respectively). CONCLUSIONS: Glaucoma induces a redox imbalance in the ipsilateral cornea with an adaptive response of the contralateral one. GENERAL SIGNIFICANCE: Our study provides a possible mechanism involving oxidative stress and inflammation that explains the corneal alterations observed in glaucoma. We demonstrate that these changes extend not only to the ipsilateral but also to the contralateral cornea.


Assuntos
Glaucoma , Ratos , Animais , Ratos Wistar , Estresse Oxidativo/fisiologia , Oxirredução , Córnea/metabolismo , Superóxido Dismutase/metabolismo
4.
Int J Pharm ; 634: 122656, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36716829

RESUMO

Supplementation with Coenzyme Q10 (CoQ10), in patients with its deficiency, has greater odds of success if the treatment is carried out early with an appropriate formulation. For neonatal CoQ10 deficiency, infant formula supplementation could be an attractive option. However, solid CoQ10 cannot be solubilized or dispersed in milk matrix leading to an inefficient CoQ10 dosage and poor intestinal absorption. We developed and characterized a high-dose CoQ10 oil-in-water (O/W) nanoemulsion suitable to supplement infant formula without modifying its organoleptic characteristics. CoQ10 powder and soy lecithin were solubilized in an oil phase consisted of Labrasol® and LabrafacTM. The aqueous phase was Tween 80, TPGS, methylparaben and propylparaben. O/W nanoemulsion was prepared by adding dropwise the oil phase to the aqueous phase under stirring to a final concentration of CoQ10 9.5 % w/w followed by ultrasonic homogenization. Pharmacotechnical parameters were determined. This formulation resulted to be easily to be dispersed in milk matrix, stable for at least 90 days, with no cytotoxicity in in vitro assays, and higher bioavailability than CoQ10 powder. CoQ10 nanoemulsion supplementation in the infant formula facilitates the individualized administration for the child with accurate dosage, overcome swallowing difficulties and in turn could increase the treatment adherence and efficacy.


Assuntos
Fórmulas Infantis , Ubiquinona , Humanos , Recém-Nascido , Disponibilidade Biológica , Suplementos Nutricionais , Pós , Lactente
5.
Toxicol Rep ; 8: 1229-1239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195014

RESUMO

Coenzyme Q10 (CoQ10) supplementation has demonstrated to be safe and effective in primary and secondary CoQ10 deficiencies. Previously, we have designed a high-dose CoQ10 oleogel (1 g/disk) with excipients used in quantities that do not represent any toxic risk. However, it was necessary to demonstrate their safety in the final formulation. Following this purpose, an acute toxicity study of the oleogel in rats was performed. Furthermore, the genotoxic risk was evaluated in human volunteers after CoQ10 supplementation with oleogel and compared to the solid form (1 g/three 00-size-capsules). In addition, the general health status and possible biochemical changes of the participants were determined using serum parameters. Results suggested the absence of adverse effects caused by the interaction of the components in the oleogel formulation. Therefore, we conclude that the designed novel high-dose CoQ10 oleogel was safe for oral consumption.

6.
Rev. argent. cardiol ; 89(2): 92-97, abr. 2021. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1356854

RESUMO

RESUMEN Introducción: Resultados de nuestro laboratorio sugieren que la disfunción mitocondrial en el corazón precede a la falla miocárdica asociada a la hiperglucemia sostenida. Objetivo: Estudiar los eventos tempranos que ocurren en las mitocondrias de corazón en un modelo de diabetes mellitus tipo 1. Materiales y métodos: Ratas Wistar macho fueron inyectadas con estreptozotocina (STZ; 60 mg/kg, ip) y sacrificadas 10 o 14 días posinyección. Se obtuvo la fracción mitocondrial de corazón. Resultados: El consumo de O2 en estado 3 en presencia de malato-glutamato (21%) o succinato (16%) y las actividades de los complejos I-III (27%), II-III (24%) y IV (22%) fueron menores en los animales diabéticos a los 14 días posinyección. Cuando los animales se sacrificaron al día 10, solo el consumo de O2 en estado 3 en presencia de sustratos del complejo I (23%) y su control respiratorio (30%) fueron menores en las ratas inyectadas con STZ, de acuerdo con una reducción en la actividad del complejo I-III (17%). Estos cambios se acompañaron de un aumento en las velocidades de producción de H2O2 (117%), NO (30%) y ONOO- (∼225%), en la expresión de mtNOS (29%) y en la [O2 -]ss (∼150%) y [NO]ss (∼30%), junto con una disminución de la actividad de la Mn-SOD (15%) y la [GSSG+GSH]mitocondrial (28%), sin cambios en la expresión de PGC-1α. Conclusión: La disfunción del complejo I y el aumento en la generación de H2O2, NO y ONOO- pueden considerarse señales subcelulares prodrómicas del deterioro de la función mitocondrial que precede a la disfunción cardíaca en la diabetes.


ABSTRACT Background: Previous results from our laboratory suggest that heart mitochondrial dysfunction precedes myocardial failure associated with sustained hyperglycemia. Purpose: The aim of this study was to analyze the early events that take place in heart mitochondria in a type 1 diabetes mellitus (DM) model. Methods: Male Wistar rats were injected with streptozotocin (STZ; 60 mg/kg, ip.) to induce DM. They were euthanized 10 or 14 days later and the heart mitochondrial fraction was obtained. Results: State 3 O2 consumption in the presence of malate-glutamate (21%) or succinate (16%), and complex I-III (27%), II-III (24%) and IV (22%) activities were lower in diabetic animals 14 days after STZ injection. When animals were euthanized at day 10, only state 3 O2 consumption sustained by complex I substrates (23%) and its corresponding respiratory control (30%) were lower in rats injected with STZ, in agreement with reduced complex I-III activity (17%). These changes were accompanied by increased H2O2 (117%), NO (30%) and ONOO- (~225%) production rates, mtNOS expression (29%) and O2 - (~150%) and NO (~30%) steady-state concentrations, together with a decrease in Mn-SOD activity (15%) and mitochondrial [GSSG+GSH] (28%), without changes in PGC-1α expression. Conclusion: Complex I dysfunction and increased H2O2, NO and ONOO- production rates can be considered subcellular prodromal signals of the mitochondrial damage that precedes myocardial dysfunction in diabetes.

7.
Pharm Dev Technol ; 26(5): 599-609, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33759695

RESUMO

Ursodeoxycholic acid (UDCA) is used in the oral therapy of hepatobiliary cholestatic diseases. Due to UDCA low aqueous solubility, two pediatric oral suspensions (25 mg/mL) were formulated with a few excipients, suspension A (SA) and suspension B (SB) with a vehicle, including two suspending agents. Physical, chemical and microbiological stability and a rheological study were performed at three different conditions (5 °C ± 3 °C, 25 °C ± 2 °C/60% RH ± 5% RH and 40 °C ± 2 °C/75% RH ± 5% RH) for 120 days. Moreover, dissolution study, content uniformity, related substances, and a study of relative oral bioavailability were also carried out. Both suspensions were physically, chemically and microbiologically stable throughout the study. SA and SB can be stored at 25 °C and 5 °C for at least 120 days whereas SA can be kept at 40 °C for at least 90 days and SB for 120 days. They both met USP specifications for dissolution, content uniformity, and related substances. SA and SB showed an improved relative oral bioavailability compared to the solid dosage form and they both displayed similar relative oral bioavailability with no significant differences between them. The developed suspensions proved to be safe and adequate and they are ideal for pediatric use for their acceptability, accurate dose administration and treatment adherence.


Assuntos
Colagogos e Coleréticos/administração & dosagem , Excipientes/química , Ácido Ursodesoxicólico/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica , Colagogos e Coleréticos/química , Colagogos e Coleréticos/farmacocinética , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Umidade , Masculino , Ratos , Ratos Sprague-Dawley , Reologia , Solubilidade , Suspensões , Temperatura , Ácido Ursodesoxicólico/química , Ácido Ursodesoxicólico/farmacocinética
8.
Clin Res Hepatol Gastroenterol ; 45(6): 101624, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33676282

RESUMO

AIM: Hereditary hemochromatosis (HH) is a group of inherited disorders that causes a slow and progressive iron deposition in diverse organs, particularly in the liver. Iron overload induces oxidative stress and tissue damage. Coenzyme Q10 (CoQ10) is a cofactor in the electron-transport chain of the mitochondria, but it is also a potent endogenous antioxidant. CoQ10 interest has recently grown since various studies show that CoQ10 supplementation may provide protective and safe benefits in mitochondrial diseases and oxidative stress disorders. In the present study we sought to determine CoQ10 plasma level in patients recently diagnosed with HH and to correlate it with biochemical, genetic, and histological features of the disease. METHODS: Plasma levels of CoQ10, iron, ferritin, transferrin and vitamins (A, C and E), liver tests (transaminases, alkaline phosphatase and bilirubin), and histology, as well as three HFE gene mutations (H63D, S654C and C282Y), were assessed in thirty-eight patients (32 males, 6 females) newly diagnosed with HH without treatment and in twenty-five age-matched normolipidemic healthy subjects with no HFE gene mutations (22 males, 3 females) and without clinical or biochemical signs of iron overload or liver diseases. RESULTS: Patients with HH showed a significant decrease in CoQ10 levels respect to control subjects (0.31 ±â€¯0.03 µM vs 0.70 ±â€¯0.06 µM, p < 0.001, respectively) independently of the genetic mutation, cirrhosis, transferrin saturation, ferritin level or markers of hepatic dysfunction. Although a decreasing trend in CoQ10 levels was observed in patients with elevated iron levels, no correlation was found between both parameters in patients with HH. Vitamins C and A levels showed no changes in HH patients. Vitamin E was significantly decreased in HH patients (21.1 ±â€¯1.3 µM vs 29.9 ±â€¯2.5 µM, p < 0.001, respectively), but no correlation was observed with CoQ10 levels. CONCLUSION: The decrease in CoQ10 levels found in HH patients suggests that CoQ10 supplementation could be a safe intervention strategy complementary to the traditional therapy to ameliorate oxidative stress and further tissue damage induced by iron overload.


Assuntos
Ataxia , Hemocromatose , Doenças Mitocondriais , Debilidade Muscular , Ubiquinona/deficiência , Ataxia/epidemiologia , Estudos de Casos e Controles , Feminino , Hemocromatose/sangue , Hemocromatose/epidemiologia , Hemocromatose/genética , Humanos , Masculino , Doenças Mitocondriais/epidemiologia , Debilidade Muscular/epidemiologia , Ubiquinona/análogos & derivados , Ubiquinona/sangue
9.
Ecotoxicol Environ Saf ; 205: 111186, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853868

RESUMO

Exposure to ambient air particulate matter (PM) is associated with increased cardiorespiratory morbidity and mortality. In this context, alveolar macrophages exhibit proinflammatory and oxidative responses as a result of the clearance of particles, thus contributing to lung injury. However, the mechanisms linking these pathways are not completely clarified. Therefore, the oxinflammation phenomenon was studied in RAW 264.7 macrophages exposed to Residual Oil Fly Ash (ROFA), a PM surrogate rich in transition metals. While cell viability was not compromised under the experimental conditions, a proinflammatory phenotype was observed in cells incubated with ROFA 100 µg/mL, characterized by increased levels of TNF-α and NO production, together with PM uptake. This inflammatory response seems to precede alterations in redox metabolism, characterized by augmented levels of H2O2, diminished GSH/GSSG ratio, and increased SOD activity. This scenario resulted in increased oxidative damage to phospholipids. Moreover, alterations in mitochondrial respiration were observed following ROFA incubation, such as diminished coupling efficiency and spare respiratory capacity, together with augmented proton leak. These findings were accompanied by a decrease in mitochondrial membrane potential. Finally, NADPH oxidase (NOX) and mitochondria were identified as the main sources of superoxide anion () in our model. These results indicate that PM exposure induces direct activation of macrophages, leading to inflammation and increased reactive oxygen species production through NOX and mitochondria, which impairs antioxidant defense and may cause mitochondrial dysfunction.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Superóxidos/metabolismo , Poluentes Atmosféricos/toxicidade , Animais , Antioxidantes/metabolismo , Cinza de Carvão/toxicidade , Peróxido de Hidrogênio/metabolismo , Inflamação , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo/imunologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
10.
Eur J Pharmacol ; 882: 173270, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32534074

RESUMO

Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy specific liver disease characterized by pruritus, elevated serum bile acids and abnormal liver function that may be associated with severe adverse pregnancy outcomes. We previously reported that plasma coenzyme Q10 (CoQ10) is decreased in women with ICP as it is its analogue coenzyme Q9 (CoQ9) in rats with ethinyl estradiol (EE)-induced cholestasis. The aim of the present study was to evaluate the possible therapeutic role of CoQ10 in experimental hepatocellular cholestasis and to compare it with ursodeoxycholic acid (UDCA) supplementation. Bile acids, CoQ9, CoQ10, transaminases, alkaline phosphatase, retinol, α-tocopherol, ascorbic acid, thiobarbituric acid reactive substances, carbonyls, glutathione, superoxide dismutase and catalase were assessed in plasma, liver and/or hepatic mitochondria in control and cholestatic rats supplemented with CoQ10 (250 mg/kg) administered alone or combined with UDCA (25 mg/kg). CoQ10 supplementation prevented bile flow decline (P < 0.05) and the increase in serum alkaline phosphatase and bile acids, particularly lithocholic acid (P < 0.05) in cholestatic rats. Furthermore, it also improved oxidative stress parameters in the liver, increased both CoQ10 and CoQ9 plasma levels and partially prevented the fall in α-tocopherol (P < 0.05). UDCA also prevented cholestasis, but it was less efficient than CoQ10 to improve the liver redox environment. Combined administration of CoQ10 and UDCA resulted in additive effects. In conclusion, present findings show that CoQ10 supplementation attenuated EE-induced cholestasis by promoting a favorable redox environment in the liver, and further suggest that it may represent an alternative therapeutic option for ICP.


Assuntos
Colestase Intra-Hepática/tratamento farmacológico , Suplementos Nutricionais , Complicações na Gravidez/tratamento farmacológico , Ubiquinona/análogos & derivados , Animais , Catalase/metabolismo , Colestase Intra-Hepática/metabolismo , Feminino , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Gravidez , Complicações na Gravidez/metabolismo , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Ácido Ursodesoxicólico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA