Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(1): 719-730, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372816

RESUMO

BACKGROUND: Streptomyces strains degrade many complex organic compounds and produce secondary metabolites. In aerobic organisms such as Streptomyces species, the tricarboxylic acid (TCA) cycle represents an indispensable central carbon metabolic pathway for energy generation and metabolic intermediary replenishment. Although various precursors for antibiotic biosynthesis are derived from this cycle, relatively few studies have focused on determining how a single carbon source can impact this metabolic pathway at different growth phases. In this study, we identified chromosomal genes involved in the TCA cycle in Streptomyces coelicolor and determined their mRNA levels. METHODS AND RESULTS: We searched the genes involved in the TCA cycle in S. coelicolor through bioinformatic analysis. Growth, glucose concentration quantification and RNA isolation were made from cultures of S. coelicolor grown on minimal medium with glucose along 72 h. mRNA levels of all identified genes were obtained by RT-qPCR. Five enzymes encoded by a single gene each were found, while for the rest at least two genes were found. The results showed that all the genes corresponding to the TCA enzymes were transcribed at very different levels and some of them displayed growth-phase dependent expression. CONCLUSION: All TCA cycle-associated genes, including paralog genes, were differentially transcribed in S. coelicolor grown in minimal medium with glucose as carbon source. Some of them, such as succinyl-CoA synthetase and succinate dehydrogenase, have low mRNA levels, which could limit the carbon flux through the TCA cycle. Our findings suggest that the genetic expansion of TCA cycle genes could confer to S. coelicolor the ability to adapt to diverse nutritional conditions and metabolic changes through different paralog genes expression.


Assuntos
Streptomyces coelicolor , Streptomyces , Ciclo do Ácido Cítrico/genética , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Glucose/metabolismo , Redes e Vias Metabólicas/genética , Streptomyces/metabolismo , Carbono/metabolismo
2.
Int Microbiol ; 23(3): 429-439, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31900743

RESUMO

The phosphoenolpyruvate-pyruvate-oxaloacetate node is a major branch within the central carbon metabolism and acts as a connection point between glycolysis, gluconeogenesis, and the TCA cycle. Phosphoenolpyruvate carboxylase, pyruvate carboxylase, phosphoenolpyruvate carboxykinase, malic enzymes, and pyruvate kinase, among others, are enzymes included in this node. We determined the mRNA levels and specific activity profiles of some of these genes and enzymes in Streptomyces coelicolor M-145. The results obtained in the presence of glucose demonstrated that all genes studied of the phosphoenolpyruvate-pyruvate-oxaloacetate node were expressed, although at different levels, with 10- to 100-fold differences. SCO3127 (phosphoenolpyruvate carboxylase gene) and SCO5261 (NADP+-dependent malic enzyme gene) showed the highest expression in the rapid growth phase, and the mRNA levels corresponding to SCO5896 (phosphoenolpyruvate-utilizing enzyme gene), and SCO0546 (pyruvate carboxylase gene) increased 5- to 10-fold towards the stationary phase. In casamino acids, in general mRNA levels of S. coelicolor were lower than in glucose, however, results showed greater mRNA expression of SCO4979 (PEP carboxykinase), SCO0208 (pyruvate phosphate dikinase gene), and SCO5261 (NADP+-dependent malic enzyme). These results suggest that PEP carboxylase (SCO3127) is an important enzyme during glucose catabolism and oxaloacetate replenishment. On the other hand, phosphoenolpyruvate carboxykinase, pyruvate phosphate dikinase, and NADP+-malic enzyme could have an important role in gluconeogenesis in S. coelicolor.


Assuntos
Gluconeogênese/genética , Glucose/metabolismo , Streptomyces coelicolor/metabolismo , Ciclo do Ácido Cítrico/genética , Metabolismo Energético , Expressão Gênica , Genes Bacterianos , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , Streptomyces coelicolor/genética
3.
Biochimie ; 142: 191-196, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28943303

RESUMO

Human mitochondrial methylmalonyl-CoA mutase (hMCM) is an isomerase that converts methylmalonyl-CoA to succinyl-CoA, a crucial step for the incorporation of some compounds derived from the diet into the central metabolism. hMCM employs highly reactive radicals from its cofactor (adenosylcobalamin, AdoCbl) to perform its reaction. Our previous work demonstrated that hMCM loses activity during catalysis and that the interaction with human MMAA (hMMAA), a GTPase protein, avoided this loss or restored hMCM activity. Even so, the mechanism by which hMMAA exerted these chaperone functions has not been described. In this work report that the formation and accumulation of OH2Cbl, the oxidized form of the AdoCbl cofactor formed during catalysis, is the cause of hMCM inactivation. Additionally, we demonstrate that the complex formation of hMCM/hMMAA decreases the rate of oxidized cofactor formation, protecting the hMCM enzyme. Moreover, an inactive model of hMCM was used to demonstrate that hMMAA is able to remove the damaged cofactor through GTP hydrolysis. Additionally, a modification in the kinetic parameters of hMCM in presence of hMMAA was observed, and for the first time, the in vivo localization of hMMAA and its colocalization with hMCM in human fibroblasts mitochondria were demonstrated.


Assuntos
Coenzimas/metabolismo , Metilmalonil-CoA Mutase/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fibroblastos/metabolismo , Humanos , Mitocôndrias/metabolismo , Oxirredução , Transporte Proteico
4.
J Zhejiang Univ Sci B ; 13(6): 423-37, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22661206

RESUMO

Vitamin B(12) is an organometallic compound with important metabolic derivatives that act as cofactors of certain enzymes, which have been grouped into three subfamilies depending on their cofactors. Among them, methylmalonyl-CoA mutase (MCM) has been extensively studied. This enzyme catalyzes the reversible isomerization of L-methylmalonyl-CoA to succinyl-CoA using adenosylcobalamin (AdoCbl) as a cofactor participating in the generation of radicals that allow isomerization of the substrate. The crystal structure of MCM determined in Propionibacterium freudenreichii var. shermanii has helped to elucidate the role of this cofactor AdoCbl in the reaction to specify the mechanism by which radicals are generated from the coenzyme and to clarify the interactions between the enzyme, coenzyme, and substrate. The existence of human methylmalonic acidemia (MMA) due to the presence of mutations in MCM shows the importance of its role in metabolism. The recent crystallization of the human MCM has shown that despite being similar to the bacterial protein, there are significant differences in the structural organization of the two proteins. Recent studies have identified the involvement of an accessory protein called MMAA, which interacts with MCM to prevent MCM's inactivation or acts as a chaperone to promote regeneration of inactivated enzyme. The interdisciplinary studies using this protein as a model in different organisms have helped to elucidate the mechanism of action of this isomerase, the impact of mutations at a functional level and their repercussion in the development and progression of MMA in humans. It is still necessary to study the mechanisms involved in more detail using new methods.


Assuntos
Metilmalonil-CoA Mutase/metabolismo , Vitamina B 12/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobamidas/metabolismo , Humanos , Mamíferos , Metilmalonil-CoA Mutase/química , Metilmalonil-CoA Mutase/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Propionibacterium/enzimologia , Propionibacterium/genética
5.
Biochem Biophys Res Commun ; 404(1): 443-7, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21138732

RESUMO

Previous studies have reported that some adenosylcobalamin-dependent enzymes suffer inactivation during catalysis due to the oxidation of cobalamin. In addition, the protection or reactivation of their catalytic activities by proteins called "protectases" or reactivases is well known in bacteria. In this study, we examined the influence of human MMAA protein on the kinetics of the reaction catalyzed by methylmalonyl-CoA mutase (MCM) by testing both purified recombinant proteins in vitro. Our results showed that MMAA plays dual roles in MCM activity. When it was added at the beginning of the reaction, it prevents inactivation by guarding MCM. After 60 min of reaction, when MCM is inactive, the addition of MMAA increases the enzymatic activity through GTP hydrolysis, indicating reactivation of MCM by exchange of the damaged cofactor. Interaction between MCM and MMAA observed in vitro was confirmed in vivo by yeast two-hybrid system.


Assuntos
Proteínas de Membrana Transportadoras/química , Metilmalonil-CoA Mutase/química , Proteínas Mitocondriais/química , Chaperonas Moleculares/química , Catálise , Clonagem Molecular , Ativação Enzimática , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Proteínas de Membrana Transportadoras/metabolismo , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA