Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(3): 487-501, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36402936

RESUMO

Harmaline (1) and harmalol (2) represent two 3,4-dihydro-ß-carboline (DHßCs) most frequently reported in a vast number of living systems. Fundamental aspects including the photosensitizing properties, cellular uptake, as well as the cyto- and phototoxicity of 1 and 2 were investigated herein. The molecular basis underlying the investigated processes are elucidated. Data reveal that both alkaloids show a distinctive pattern of extracellular DNA photodamage. Compound 1 induces a DNA photodamage profile dominated by oxidised purines and sites of base loss (AP sites), whereas 2 mostly induces single-strand breaks (SSBs) in addition to a small extent of purine oxidative damage. In both cases, DNA oxidative damage would occur through type I mechanism. In addition, a concerted hydrolytic attack is suggested as an extra mechanism accounting for the SSBs formation photoinduced by 2. Subcellular internalisation, cyto- and phototoxicity of 1 and 2 and the corresponding full-aromatic derivatives harmine (3) and harmol (4) also showed quite distinctive patterns in a structure-dependent manner. These results are discussed in the framework of the potential biological, biomedical and/or pharmacological roles reported for these alkaloids. The subtle structural difference (i.e., the exchange of a methoxy group for a hydroxyl substituent at C(7)) between harmaline and harmalol, gives rise to distinctive photosensitizing and subcellular localisation patterns.


Assuntos
Alcaloides , Harmalina , Harmalina/farmacologia , Harmalina/química , Carbolinas/farmacologia , Carbolinas/química , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA