Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126103

RESUMO

The formation and analysis of amyloid fibers by two ß-glucosidases, BglA and BglB, belonging to the GH1 enzyme family, are reported. Both proteins have the (ß/α)8 TIM-barrel fold, which is characteristic of this family and is also the most common protein structure. BglA is an octamer, whereas BglB is a monomer. Amyloid fibrillation using pH and temperature as perturbing agents was investigated using fluorescence spectroscopy as a preliminary approach and corroborated using wide-field optical microscopy, confocal microscopy, and field-emission scanning electron microscopy. These analyses showed that both enzymes fibrillate at a wide range of acidic and alkaline conditions and at several temperature conditions, particularly at acidic pH (3-4) and at temperatures between 45 and 65 °C. Circular dichroism spectroscopy corroborated the transition from an α-helix to a ß-sheet secondary structure of both proteins in conditions where fibrillation was observed. Overall, our results suggest that fibrillation is a rather common phenomenon caused by protein misfolding, driven by a transition from an α-helix to a ß-sheet secondary structure, that many proteins can undergo if subjected to conditions that disturb their native conformation.


Assuntos
Amiloide , Amiloide/química , Amiloide/metabolismo , Concentração de Íons de Hidrogênio , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Dicroísmo Circular , Temperatura , Estrutura Secundária de Proteína , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA