Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928444

RESUMO

Long non-coding RNAs (lncRNAs) are nucleotide sequences that participate in different biological processes and are associated with different pathologies, including cancer. Long intergenic non-protein-coding RNA 662 (LINC00662) has been reported to be involved in different cancers, including colorectal, prostate, and breast cancer. However, its role in gallbladder cancer has not yet been described. In this article, we hypothesize that LINC00662 has an important role in the acquisition of aggressiveness traits such as a stem-like phenotype, invasion, and chemoresistance in gallbladder cancer. Here, we show that LINC00662 is associated with larger tumor size and lymph node metastasis in patients with gallbladder cancer. Furthermore, we show that the overexpression of LINC00662 promotes an increase in CD133+/CD44+ cell populations and the expression of stemness-associated genes. LINC00662 promotes greater invasive capacity and the expression of genes associated with epithelial-mesenchymal transition. In addition, the expression of LINC00662 promotes resistance to cisplatin and 5-fluorouracil, associated with increased expression of chemoresistance-related ATP-binding cassette (ABC) transporters in gallbladder cancer (GBC) cell lines. Finally, we show that the mechanism by which LINC00662 exerts its function is through a decrease in microRNA 335-5p (miR-335-5p) and an increase in octamer-binding transcription factor 4 (OCT4) in GBC cells. Thus, our data allow us to propose LINC00662 as a biomarker of poor prognosis and a potential therapeutic target for patients with GBC.


Assuntos
Neoplasias da Vesícula Biliar , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Fator 3 de Transcrição de Octâmero , RNA Longo não Codificante , Humanos , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/patologia , Neoplasias da Vesícula Biliar/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Feminino , Transição Epitelial-Mesenquimal/genética , Resistencia a Medicamentos Antineoplásicos/genética , Masculino , Invasividade Neoplásica , Cisplatino/farmacologia , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fluoruracila/farmacologia , Metástase Linfática
2.
Microorganisms ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38792752

RESUMO

Chagas disease is caused by the single-flagellated protozoan Trypanosoma cruzi, which affects several million people worldwide. Understanding the signal transduction pathways involved in this parasite's growth, adaptation, and differentiation is crucial. Understanding the basic mechanisms of signal transduction in T. cruzi could help to develop new drugs to treat the disease caused by these protozoa. In the present work, we have demonstrated that Fetal Calf Serum (FCS) can quickly increase the levels of both phosphorylated and unphosphorylated forms of T. cruzi DNA polymerase beta (TcPolß) in tissue-cultured trypomastigotes. The in vitro phosphorylation sites on TcPolß by protein kinases TcCK1, TcCK2, TcAUK1, and TcPKC1 have been identified by Mass Spectrometry (MS) analysis and with antibodies against phosphor Ser-Thr-Tyr. MS analysis indicated that these protein kinases can phosphorylate Ser and Thr residues on several sites on TcPolß. Unexpectedly, it was found that TcCK1 and TcPKC1 can phosphorylate a different Tyr residue on TcPolß. By using a specific anti-phosphor Tyr monoclonal antibody, it was determined that TcCK1 can be in vitro autophosphorylated on Tyr residues. In vitro and in vivo studies showed that phorbol 12-myristate 13-acetate (PMA) can activate the PKC to stimulate the TcPolß phosphorylation and enzymatic activity in T. cruzi epimastigotes.

3.
Animals (Basel) ; 14(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672378

RESUMO

Mammary cancer is a frequent disease in female dogs, where a high proportion of cases correspond to malignant tumors that may exhibit drug resistance. Within the mammary tumor microenvironment, there is a cell subpopulation called cancer stem cells (CSCs), which are capable of forming spheres in vitro and resisting anti-tumor treatments, partly explaining the recurrence of some tumors. Previously, it has been described that spheres derived from canine mammary carcinoma cells CF41.Mg and REM 134 exhibit stemness characteristics. Melatonin has shown anti-tumor effects on mammary tumor cells; however, its effects have been poorly evaluated in canine mammary CSCs. This study aimed to analyze the effect of melatonin on the chemoresistance exhibited by stem-like neoplastic cells derived from canine mammary carcinoma to cytotoxic drugs such as doxorubicin and mitoxantrone. CF41.Mg and REM 134 cells were cultured in high-glucose DMEM supplemented with fetal bovine serum and L-glutamine. The spheres were cultured in ultra-low attachment plates in DMEM/F12 medium without fetal bovine serum and with different growth factors. The CD44+/CD24-/low phenotype was analyzed by flow cytometry. The viability of sphere-derived cells (MTS reduction) was studied in the presence of melatonin (0.1 or 1 mM), doxorubicin, mitoxantrone, and luzindole. In addition, the gene (RT-qPCR) of the multidrug resistance bombs MDR1 and ABCG2 were analyzed in the presence of melatonin. Both cell types expressed the MT1 gene, which encodes the melatonin receptor MT1. Melatonin 1 mM does not modify the CD44+/CD24-/low phenotype; however, the hormone reduced viability (p < 0.0001) only in CF41.Mg spheres, without inducing an additive effect when co-incubated with cytotoxic drugs. These effects were independent of the binding of the hormone to its receptor MT1, since, by pharmacologically inhibiting them, the effect of melatonin was not blocked. In CF41.Mg spheres, the relative gene expression of ABCG2 and MDR1 was decreased in response to the hormone (p < 0.001). These results indicate that melatonin negatively modulates the cell survival of spheres derived from CF41.Mg cells, in a way that is independent of its MT1 receptor. These effects did not counteract the resistance to doxorubicin and mitoxantrone, even though the hormone negatively regulates the gene expression of MDR1 and ABCG2.

4.
Cancer Cell Int ; 23(1): 318, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072958

RESUMO

BACKGROUND: Gallbladder cancer (GBC) is a prevalent and deadly biliary tract carcinoma, often diagnosed at advanced stages with limited treatment options. The 5-year survival rate varies widely from 4 to 60%, mainly due to differences in disease stage detection. With only a small fraction of patients having resectable tumors and a high incidence of metastasis, advanced GBC stages are characterized by significant chemoresistance. Identification of new therapeutic targets is crucial, and recent studies have shown that the Endothelin-1 (ET-1) signaling pathway, involving ETAR and/or ETBR receptors (ETRs), plays a crucial role in promoting tumor aggressiveness in various cancer models. Blocking one or both receptors has been reported to reduce invasiveness and chemoresistance in cancers like ovarian, prostate, and colon. Furthermore, transcriptomic studies have associated ET-1 levels with late stages of GBC; however, it remains unclear whether its signaling or its inhibition has implications for its aggressiveness. Although the role of ET-1 signaling in gallbladder physiology is minimally understood, its significance in other tumor models leads us to hypothesize its involvement in GBC malignancy. RESULTS: In this study, we investigated the expression of ET-1 pathway proteins in three GBC cell lines and a primary GBC culture. Our findings demonstrated that both ETAR and ETBR receptors are expressed in GBC cells and tumor samples. Moreover, we successfully down-regulated ET-1 signaling using a non-selective ETR antagonist, Macitentan, which resulted in reduced migratory and invasive capacities of GBC cells. Additionally, Macitentan treatment chemosensitized the cells to Gemcitabine, a commonly used therapy for GBC. CONCLUSION: For the first time, we reveal the role of the ET-1 pathway in GBC cells, providing insight into the potential therapeutic targeting of its receptors to mitigate invasion and chemoresistance in this cancer with limited treatment options. These findings pave the way for further exploration of Macitentan or other ETR antagonists as potential therapeutic strategies for GBC management. In summary, our study represents a groundbreaking contribution to the field by providing the first evidence of the ET 1 pathway's pivotal role in modulating the behavior and aggressiveness of GBC cells, shedding new light on potential therapeutic targets.

5.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003265

RESUMO

Cancer is a genomic disease, with driver mutations contributing to tumorigenesis. These potentially heritable variants influence risk and underlie familial breast cancer (BC). This study evaluated associations between BC risk and 13 SNPs in driver genes MAP3K1, SF3B1, SMAD4, ARID2, ATR, KMT2C, MAP3K13, NCOR1, and TBX3, in BRCA1/2-negative Chilean families. SNPs were genotyped using TaqMan Assay in 492 cases and 1285 controls. There were no associations between rs75704921:C>T (ARID2); rs2229032:A>C (ATR); rs3735156:C>G (KMT2C); rs2276738:G>C, rs2293906:C>T, rs4075943T:>A, rs13091808:C>T (MAP3K13); rs178831:G>A (NCOR1); or rs3759173:C>A (TBX3) and risk. The MAP3K1 rs832583 A allele (C/A+A/A) showed a protective effect in families with moderate BC history (OR = 0.7 [95% CI 0.5-0.9] p = 0.01). SF3B1 rs16865677-T (G/T+T/T) increased risk in sporadic early-onset BC (OR = 1.4 [95% CI 1.0-2.0] p = 0.01). SMAD4 rs3819122-C (A/C+C/C) increased risk in cases with moderate family history (OR = 2.0 [95% CI 1.3-2.9] p ≤ 0.0001) and sporadic cases diagnosed ≤50 years (OR = 1.6 [95% CI 1.1-2.2] p = 0.006). SMAD4 rs12456284:A>G increased BC risk in G-allele carriers (A/G + G/G) in cases with ≥2 BC/OC cases and early-onset cases (OR = 1.2 [95% CI 1.0-1.6] p = 0.04 and OR = 1.4 [95% CI 1.0-1.9] p = 0.03, respectively). Our study suggests that specific germline variants in driver genes MAP3K1, SF3B1, and SMAD4 contribute to BC risk in Chilean population.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Proteína BRCA1/genética , Chile/epidemiologia , Predisposição Genética para Doença , Proteína BRCA2/genética , Mutação em Linhagem Germinativa , Células Germinativas , Polimorfismo de Nucleotídeo Único
6.
Biomolecules ; 13(9)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759783

RESUMO

Indomethacin is a non-selective NSAID used against pain and inflammation. Although cyclooxygenase (COX) inhibition is considered indomethacin's primary action mechanism, COX-independent ways are associated with beneficial effects in cancer. In colon cancer cells, the activation of the peroxisome proliferator-activated receptor-γ (PPAR-γ) is related to the increase in spermidine/spermine-N1-acetyltransferase-1 (SSAT-1), a key enzyme for polyamine degradation, and related to cell cycle arrest. Indomethacin increases the SSAT-1 levels in lung cancer cells; however, the mechanism relying on the SSAT-1 increase is unclear. Thus, we asked for the influence of the PPAR-γ on the SSAT-1 expression in two lung cancer cell lines: H1299 and A549. We found that the inhibition of PPAR-γ with GW9662 did not revert the increase in SSAT-1 induced by indomethacin. Because the mRNA of SSAT-1 suffers a pre-translation retention step by nucleolin, a nucleolar protein, we explored the relationship between indomethacin and the upstream translation regulators of SSAT-1. We found that indomethacin decreases the nucleolin levels and the cyclin-dependent kinase 1 (CDK1) levels, which phosphorylates nucleolin in mitosis. Overexpression of nucleolin partially reverts the effect of indomethacin over cell viability and SSAT-1 levels. On the other hand, Casein Kinase, known for phosphorylating nucleolin during interphase, is not modified by indomethacin. SSAT-1 exerts its antiproliferative effect by acetylating polyamines, a process reverted by the polyamine oxidase (PAOX). Recently, methoctramine was described as the most specific inhibitor of PAOX. Thus, we asked if methoctramine could increase the effect of indomethacin. We found that, when combined, indomethacin and methoctramine have a synergistic effect against NSCLC cells in vitro. These results suggest that indomethacin increases the SSAT-1 levels by reducing the CDK1-nucleolin regulatory axis, and the PAOX inhibition with methoctramine could improve the antiproliferative effect of indomethacin.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Acetiltransferases/genética , Proteína Quinase CDC2 , Ciclo-Oxigenase 2 , Indometacina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Oxirredutases , Receptores Ativados por Proliferador de Peroxissomo , Poliamina Oxidase , Nucleolina
7.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835452

RESUMO

Breast cancer (BC) is the most common cancer among women worldwide. BRCA1/2 are responsible for 16-20% of the risk for hereditary BC. Other susceptibility genes have been identified; Fanconi Anemia Complementation Group M (FANCM) being one of these. Two variants in FANCM, rs144567652 and rs147021911, are associated with BC risk. These variants have been described in Finland, Italy, France, Spain, Germany, Australia, the United States, Sweden, Finnish, and the Netherlands, but not in the South American populations. Our study evaluated the association of the SNPs rs144567652 and rs147021911 with BC risk in non-carriers of BRCA1/2 mutations from a South American population. The SNPs were genotyped in 492 BRCA1/2-negative BC cases and 673 controls. Our data do not support an association between FANCM rs147021911 and rs144567652 SNPs and BC risk. Nevertheless, two BC cases, one with a family history of BC and the other with sporadic early-onset BC, were C/T heterozygotes for rs144567652. In conclusion, this is the first study related contribution of FANCM mutations and BC risk in a South American population. Nevertheless, more studies are necessary to evaluate if rs144567652 could be responsible for familial BC in BRCA1/2-negatives and for early-onset non-familial BC in Chilean BC cases.


Assuntos
Neoplasias da Mama , DNA Helicases , Predisposição Genética para Doença , Feminino , Humanos , Neoplasias da Mama/genética , Chile/epidemiologia , DNA Helicases/genética , Mutação , Idade de Início
8.
Cells ; 12(3)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766848

RESUMO

Glioblastoma (GBM) is the most common and aggressive type of brain tumor due to its elevated recurrence following treatments. This is mainly mediated by a subpopulation of cells with stemness traits termed glioblastoma stem-like cells (GSCs), which are extremely resistant to anti-neoplastic drugs. Thus, an advancement in the understanding of the molecular processes underlying GSC occurrence should contribute significantly towards progress in reducing aggressiveness. High levels of endothelin-converting enzyme-1 (ECE1), key for endothelin-1 (ET-1) peptide activation, have been linked to the malignant progression of GBM. There are four known isoforms of ECE1 that activate ET-1, which only differ in their cytoplasmic N-terminal sequences. Isoform ECE1c is phosphorylated at Ser-18 and Ser-20 by protein kinase CK2, which increases its stability and hence promotes aggressiveness traits in colon cancer cells. In order to study whether ECE1c exerts a malignant effect in GBM, we designed an ECE1c mutant by switching a putative ubiquitination lysine proximal to the phospho-serines Lys-6-to-Arg (i.e., K6R). This ECE1cK6R mutant was stably expressed in U87MG, T98G, and U251 GBM cells, and their behavior was compared to either mock or wild-type ECE1c-expressing clone cells. ECE1cK6R behaved as a highly stable protein in all cell lines, and its expression promoted self-renewal and the enrichment of a stem-like population characterized by enhanced neurospheroid formation, as well as increased expression of stem-like surface markers. These ECE1cK6R-derived GSC-like cells also displayed enhanced resistance to the GBM-related chemotherapy drugs temozolomide and gemcitabine and increased expression of the ABCG2 efflux pump. In addition, ECE1cK6R cells displayed enhanced metastasis-associated traits, such as the modulation of adhesion and the enhancement of cell migration and invasion. In conclusion, the acquisition of a GSC-like phenotype, together with heightened chemoresistance and invasiveness traits, allows us to suggest phospho-ECE1c as a novel marker for poor prognosis as well as a potential therapeutic target for GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/metabolismo , Enzimas Conversoras de Endotelina/genética , Enzimas Conversoras de Endotelina/metabolismo , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/patologia , Fenótipo
9.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499743

RESUMO

Variants in genes encoding for microRNAs have been associated with their deregulation in breast cancer (BC). Sequencing of microRNAs deregulated in BC was performed using DNA from Chilean patients with a strong family history and negative for mutations in BRCA1/BRCA2. Seventeen variants were identified, three of which were selected for a case-control association study: rs376491654 (miR-335), rs755634302 (miR-497), and rs190708267 (miR-155). For rs190708267 C>T, the heterozygous T allele was detected in four BC cases and absent in controls, while homozygous TT cases were not detected. Variants were modelled in silico, cloned in a plasmid, expressed in BC cell lines, and functional in vitro assays were performed. Overexpression of the miR-155-T allele increased mature miR-155-5p levels in both BC cell lines, suggesting that its presence alters pre-miR-155 processing. Moreover, BC cells overexpressing the miR-155-T allele showed increased proliferation, migration, and resistance to cisplatin-induced death compared to miR-155-C overexpressing cells. Of note, the 3'UTR of APC, GSK3ß, and PPP1CA genes, all into the canonical Wnt signaling pathway, were identified as direct targets. APC and GSK3ß mRNA levels decreased while PP1 levels increased. These results suggest a pathogenic role of the variant rs190708267 (miR-155) in BRCA 1/2 negative BC, conferring susceptibility and promoting traits of aggressiveness.


Assuntos
Neoplasias da Mama , MicroRNAs , Feminino , Humanos , Regiões 3' não Traduzidas , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação
10.
Microorganisms ; 10(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35630333

RESUMO

High-risk human papillomaviruses (HR-HPVs) are the etiological agents of cervical cancer. However, a low proportion of HR-HPV-infected women finally develop this cancer, which suggests the involvement of additional cofactors. Epstein−Barr virus (EBV) has been detected in cervical squamous cell carcinomas (SCCs) as well as in low- (LSIL) and high-grade (HSIL) squamous intraepithelial lesions, although its role is unknown. In this study, we characterized HR-HPV/EBV co-presence and viral gene expression in LSIL (n = 22), HSIL (n = 52), and SCC (n = 19) from Chilean women. Additionally, phenotypic changes were evaluated in cervical cancer cells ectopically expressing BamHI-A Rightward Frame 1 (BARF1). BARF1 is a lytic gene also expressed in EBV-positive epithelial tumors during the EBV latency program. HPV was detected in 6/22 (27.3%) LSIL, 38/52 (73.1%) HSIL, and 15/19 (78.9%) SCC cases (p < 0.001). On the other hand, EBV was detected in 16/22 (72.7%) LSIL, 27/52 (51.9%) HSIL, and 13/19 (68.4%) SCC cases (p = 0.177). HR-HPV/EBV co-presence was detected in 3/22 (13.6%) LSIL, 17/52 (32.7%) HSIL, and 11/19 (57.9%) SCC cases (p = 0.020). Additionally, BARF1 transcripts were detected in 37/55 (67.3%) of EBV positive cases and in 19/30 (63.3%) of HR-HPV/EBV positive cases. Increased proliferation, migration, and epithelial-mesenchymal transition (EMT) was observed in cervical cancer cells expressing BARF1. Thus, both EBV and BARF1 transcripts are detected in low- and high-grade cervical lesions as well as in cervical carcinomas. In addition, BARF1 can modulate the tumor behavior in cervical cancer cells, suggesting a role in increasing tumor aggressiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA