Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0306420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39038028

RESUMO

The widespread adoption of cloud computing necessitates privacy-preserving techniques that allow information to be processed without disclosure. This paper proposes a method to increase the accuracy and performance of privacy-preserving Convolutional Neural Networks with Homomorphic Encryption (CNN-HE) by Self-Learning Activation Functions (SLAF). SLAFs are polynomials with trainable coefficients updated during training, together with synaptic weights, for each polynomial independently to learn task-specific and CNN-specific features. We theoretically prove its feasibility to approximate any continuous activation function to the desired error as a function of the SLAF degree. Two CNN-HE models are proposed: CNN-HE-SLAF and CNN-HE-SLAF-R. In the first model, all activation functions are replaced by SLAFs, and CNN is trained to find weights and coefficients. In the second one, CNN is trained with the original activation, then weights are fixed, activation is substituted by SLAF, and CNN is shortly re-trained to adapt SLAF coefficients. We show that such self-learning can achieve the same accuracy 99.38% as a non-polynomial ReLU over non-homomorphic CNNs and lead to an increase in accuracy (99.21%) and higher performance (6.26 times faster) than the state-of-the-art CNN-HE CryptoNets on the MNIST optical character recognition benchmark dataset.


Assuntos
Segurança Computacional , Redes Neurais de Computação , Privacidade , Humanos , Algoritmos , Computação em Nuvem
2.
PLoS One ; 17(1): e0261856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051195

RESUMO

Containers have emerged as a more portable and efficient solution than virtual machines for cloud infrastructure providing both a flexible way to build and deploy applications. The quality of service, security, performance, energy consumption, among others, are essential aspects of their deployment, management, and orchestration. Inappropriate resource allocation can lead to resource contention, entailing reduced performance, poor energy efficiency, and other potentially damaging effects. In this paper, we present a set of online job allocation strategies to optimize quality of service, energy savings, and completion time, considering contention for shared on-chip resources. We consider the job allocation as the multilevel dynamic bin-packing problem that provides a lightweight runtime solution that minimizes contention and energy consumption while maximizing utilization. The proposed strategies are based on two and three levels of scheduling policies with container selection, capacity distribution, and contention-aware allocation. The energy model considers joint execution of applications of different types on shared resources generalized by the job concentration paradigm. We provide an experimental analysis of eighty-six scheduling heuristics with scientific workloads of memory and CPU-intensive jobs. The proposed techniques outperform classical solutions in terms of quality of service, energy savings, and completion time by 21.73-43.44%, 44.06-92.11%, and 16.38-24.17%, respectively, leading to a cost-efficient resource allocation for cloud infrastructures.


Assuntos
Algoritmos , Computação em Nuvem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA