Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232016

RESUMO

Tissue accidents provide numerous pathways for pathogens to invade and flourish, causing additional harm to the host tissue while impeding its natural healing and regeneration. Essential oils (EOs) exhibit rapid and effective antimicrobial properties without promoting bacterial resistance. Clove oils (CEO) demonstrate robust antimicrobial activity against different pathogens. Chitosan (CS) is a natural, partially deacetylated polyamine widely recognized for its vast antimicrobial capacity. In this study, we present the synthesis of four membrane formulations utilizing CS, polyvinyl alcohol (PVA), and glycerol (Gly) incorporated with CEO and nanobioglass (n-BGs) for applications in subdermal tissue regeneration. Our analysis of the membranes' thermal stability and chemical composition provided strong evidence for successfully blending polymers with the entrapment of the essential oil. The incorporation of the CEO in the composite was evidenced by the increase in the intensity of the band of C-O-C in the FTIR; furthermore, the increase in diffraction peaks, as well as the broadening, provide evidence that the introduction of CEO perturbed the crystal structure. The morphological examination conducted using scanning electron microscopy (SEM) revealed that the incorporation of CEO resulted in smooth surfaces, in contrast to the porous morphologies observed with the n-BGs. A histological examination of the implanted membranes demonstrated their biocompatibility and biodegradability, particularly after a 60-day implantation period. The degradation process of more extensive membranes involved connective tissue composed of type III collagen fibers, blood vessels, and inflammatory cells, which supported the reabsorption of the composite membranes, evidencing the material's biocompatibility.

2.
Molecules ; 27(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684575

RESUMO

Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol-gel methodology with a size of ca. 24.87 ± 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 ± 0.44 to 2.85 ± 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 °C to 63 °C. In addition, the n-BGs increased the thermal stability due to the nanoparticle's intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.


Assuntos
Nanocompostos , Poliésteres , Escherichia coli , Células HeLa , Humanos , Nanocompostos/química , Poliésteres/química , Poliésteres/farmacologia , Engenharia Tecidual
3.
Pharmaceutics ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36678672

RESUMO

The search for new biocompatible materials that can replace invasive materials in biomedical applications has increased due to the great demand derived from accidents and diseases such as cancer in various tissues. In this sense, four formulations based on polycaprolactone (PCL) and polylactic acid (PLA) incorporated with zinc oxide nanoparticles (ZnO-NPs) and tea tree essential oil (TTEO) were prepared. The sol-gel method was used for zinc oxide nanoparticle synthesis with an average size of 11 ± 2 nm and spherical morphology. On the other hand, Fourier Transformed infrared spectroscopy (FTIR) showed characteristic functional groups for each composite component. The TTEO incorporation in the formulations was related to the increased intensity of the C-O-C band. The thermal properties of the materials show that the degradative properties of the ZnO-NPs decrease the thermal stability. The morphological study by scanning electron microscopy (SEM) showed that the presence of TTEO and ZnO-NPs act synergistically, obtaining smooth surfaces, whereas membranes with the presence of ZnO-NPs or TTEO only show porous morphologies. Histological implantation of the membranes showed biocompatibility and biodegradability after 60 days of implantation. This degradation occurs through the fragmentation of the larger particles with the presence of connective tissue constituted by type III collagen fibers, blood vessels, and inflammatory cells, where the process of resorption of the implanted material continues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA