Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Methods Mol Biol ; 2722: 149-169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37897607

RESUMO

Fourier transform infrared spectroscopy (FTIR) is a simple nondestructive technique that allows the user to obtain quick and accurate information about the structure of the constituents of wood. Spectra deconvolution is a computational technique, complementary to FTIR analysis, which improves the resolution of overlapped or unobserved bands in the raw spectra. High performance liquid chromatography (HPLC) is an analytical technique useful to determine the ratio of the lignin monomers obtained by the alkaline nitrobenzene oxidation method. Furthermore, lignin content has been commonly determined by wet chemical methods; Klason lignin determination is a quick and accessible method. Here, we detail the procedures for chemical analysis of the wood lignin using these techniques. Additionally, the deconvolution process of FTIR spectra for the determination of the S/G ratio, in lignin isolated by this or other methods, is explained in detail.


Assuntos
Lignina , Madeira , Lignina/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Cromatografia Líquida de Alta Pressão/métodos , Madeira/química , Cromatografia Gasosa
2.
PLoS One ; 18(11): e0293430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37943793

RESUMO

In tropical dry forests, studies on wood anatomical traits have concentrated mainly on variations in vessel diameter and frequency. Recent research suggests that parenchyma and fibers also play an important role in water conduction and in xylem hydraulic safety. However, these relationships are not fully understood, and wood trait variation among different functional profiles as well as their variation under different water availability scenarios have been little studied. In this work, we aim to (1) characterize a set of wood anatomical traits among six selected tree species that represent the economic spectrum of tropical dry forests, (2) assess the variation in these traits under three different rainfall regimes, and (3) determine the relationships between wood anatomical traits and possible functional trade-offs. Differences among species and sites in wood traits were explored. Linear mixed models were fitted, and model comparison was performed. Most variation occurred among species along the economic spectrum. Obligate deciduous, low wood density species were characterized by wood with wide vessels and low frequency, suggesting high water transport capacity but sensitivity to drought. Moreover, high cell fractions of carbon and water storage were also found in these tree species related to the occurrence of abundant parenchyma or septate fibers. Contrary to what most studies show, Cochlospermum vitifolium, a succulent tree species, presented the greatest variation in wood traits. Facultative deciduous, high wood density species were characterized by a sturdy vascular system that may favor resistance to cavitation and low reserve storage. Contrary to our expectations, variation among the rainfall regimes was generally low in all species and was mostly related to vessel traits, while fiber and parenchyma traits presented little variation among species. Strong functional associations between wood anatomical traits and functional trade-offs were found for the six tree species studied along the economic spectrum of tropical dry forests.


Assuntos
Árvores , Clima Tropical , México , Madeira , Xilema , Florestas , Água , Folhas de Planta
3.
Sci Total Environ ; 880: 163265, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028671

RESUMO

Approximately 42 % of Mexico is affected by soil denudation resulting from moderate to severe sheet erosion and gullying processes. At Huasca de Ocampo (central Mexico), soil degradation has been linked to intense land use dating back to pre-Hispanic times as well as to unfavorable geological, geomorphic, and climatic conditions. Here, we quantify erosion rates with high precision at annual to multi-decadal timescales by combining, for the first time, dendrogeomorphic reconstructions and UAV-based remote sensing. To assess rates of sheet erosion and gullying processes over the longer-term erosion rates (10-60 yrs), we assessed the age and first exposure of 159 roots to determine sheet erosion rates and gullying processes. At shorter timescales (<3 yrs), we employed an Unmanned Aerial Vehicle (UAV) to develop digital surface models (DSMs) for February 2020 and September 2022. Exposed roots provided evidence of sheet erosion ranging between 2.8 and 43.6 mm yr-1 and channel widening ranging between 11 and 270 mm yr-1, with highest erosion rates found along gully slopes. The UAV-based approach pointed to intense gully headcut retreat with rates between 164.8 and 870.4 mm yr-1; within gullies, channel widening rates ranged between 88.7 and 213.6 mm yr-1 and gully incision rates were between 11.8 and 109.8 mm yr-1. The two approaches yielded very comparable results regarding gully erosion and channel widening; this underlines the potential of using exposed roots to quantifying soil degradation processes retrospectively and considerably beyond the period covered by UAV imagery.

4.
Polymers (Basel) ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432966

RESUMO

Cellulose is the main polymer that gives strength to the cell wall and is located in the primary and secondary cell walls of plants. In Cactaceae, there are no studies on the composition of cellulose. The objective of this work was to analyze the crystallinity composition and anatomical distribution of cellulose in Cactaceae vascular tissue. Twenty-five species of Cactaceae were collected, dried, and milled. Cellulose was purified and analyzed with Fourier transform infrared spectroscopy, the crystallinity indexes were calculated, and statistical analyzes were performed. Stem sections were fixed, cut, and stained with safranin O/fast green, for observation with epifluorescence microscopy. The crystalline cellulose ratios had statistical differences between Echinocereus pectinatus and Coryphantha pallida. All cacti species presented a higher proportion of crystalline cellulose. The fluorescence emission of the cellulose was red in color and distributed in the primary wall of non-fibrous species; while in the fibrous species, the distribution was in the pits. The high percentages of crystalline cellulose may be related to its distribution in the non-lignified parenchyma and primary walls of tracheary elements with helical or annular thickenings of non-fibrous species, possibly offering structural rigidity and forming part of the defense system against pathogens.

5.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35267784

RESUMO

Lignin is one of the most studied and analyzed materials due to its importance in cell structure and in lignocellulosic biomass. Because lignin exhibits autofluorescence, methods have been developed that allow it to be analyzed and characterized directly in plant tissue and in samples of lignocellulose fibers. Compared to destructive and costly analytical techniques, fluorescence microscopy presents suitable alternatives for the analysis of lignin autofluorescence. Therefore, this review article analyzes the different methods that exist and that have focused specifically on the study of lignin because with the revised methods, lignin is characterized efficiently and in a short time. The existing qualitative methods are Epifluorescence and Confocal Laser Scanning Microscopy; however, other semi-qualitative methods have been developed that allow fluorescence measurements and to quantify the differences in the structural composition of lignin. The methods are fluorescence lifetime spectroscopy, two-photon microscopy, Föster resonance energy transfer, fluorescence recovery after photobleaching, total internal reflection fluorescence, and stimulated emission depletion. With these methods, it is possible to analyze the transport and polymerization of lignin monomers, distribution of lignin of the syringyl or guaiacyl type in the tissues of various plant species, and changes in the degradation of wood by pulping and biopulping treatments as well as identify the purity of cellulose nanofibers though lignocellulosic biomass.

6.
Chem Biodivers ; 18(10): e2100431, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34496126

RESUMO

Cactaceae family has heterogeneity in the accumulation of lignocellulose due to the diversity of shapes and anatomy of the wood. Most studies focus on fibrous and dimorphic species; but the non-fibrous species are poorly studied. The aims of this work were to analyze the syringyl/guaiacyl ratio of lignin and its distribution in secondary xylem, especially in non-fibrous species. The syringyl/guaiacyl (S/G) ratio was quantified from 34 species of cacti by nitrobenzene oxidation of free-extractive wood. The distribution of lignocellulose in wood sections stained with safranin O/fast green was determined with epifluorescence microscopy. The S/G ratio was heterogeneous; most of the non-fibrous species had a higher percentage of syringyl, while the fibrous ones accumulate guaiacyl. Fluorescence emission showed that vessel elements and wide-band tracheids had similar tonalities. It is hypothesized that the presence of a higher percentage of syringyl in most cacti is part of the defense mechanism against pathogens, which together with the succulence of the stem represent adaptations that contribute to survival in their hostile environments.


Assuntos
Cactaceae/química , Lignina/química , Xilema/química , Lignina/isolamento & purificação , Filogenia
7.
PLoS One ; 16(6): e0250721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34077439

RESUMO

Migration of Boreotropical megathermal taxa during the Oligocene and Miocene played a key role in assembling diversity in tropical regions. Despite scattered fossil reports, the cashew genus Anacardium offers an excellent example of such migration. The fossil woods described here come from localities in Veraguas, Panama mapped as Oligocene-Miocene. We studied, described, and identified two well-preserved specimens using wood anatomical characteristics and completed extensive comparisons between fossil and extant material. The studied fossil woods share several diagnostic features with the modern Anacardium genus, including large solitary vessels, large intervessel-pitting, a simple vessel-ray pitting pattern, and mostly 1-3 seriate rays with large rhomboidal solitary crystals. We propose a new fossil species named Anacardium gassonii sp. nov., that adds an essential piece to the understanding of the historical biogeography of the genus. In addition, our findings confirm previous interpretations of this species' migration from Europe to North America and its crossing through Panama, leading to subsequent diversification in South America. This discovery provides an important link to the historical migration patterns of the genus, supporting the notion of an Eocene migration to the Neotropics via Boreotropical bridges, as well as an Oligocene-Miocene crossing of Central America followed by diversification in South America.


Assuntos
Anacardium/fisiologia , Evolução Biológica , Meio Ambiente , Fósseis , Árvores/fisiologia , Panamá , Filogenia
8.
Front Plant Sci ; 10: 1497, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850014

RESUMO

The xylem of Cactaceae is a complex system with different types of cells whose main function is to conduct and store water, mostly during the development of primary xylem, which has vessel elements and wide-band tracheids. The anatomy of primary xylem of Cactaceae has been widely studied, but little is known about its chemical composition. The aim of this study was to determine the structural chemical composition of the primary xylem of Cactaceae and to compare it with the anatomy in the group. Seeds from eight cacti species were used, representing the Pereskioideae, Opuntioideae, and Cactoideae subfamilies. Seeds were germinated and grown for 8 months. Subsequently, only the stem of the seedling was selected, dried, milled, and processed following the TAPPI T-222 om-02 norm; lignin was quantified using the Klason method and cellulose with the Kurshner-Höffer method. Using Fourier transform infrared spectroscopy, the percentage of syringyl and guaiacyl in lignin was calculated. Seedlings of each species were fixed, sectioned, and stained for their anatomical description and fluorescence microscopy analysis for the topochemistry of the primary xylem. The results showed that there were significant differences between species (p < 0.05), except in the hemicelluloses. Through a principal component analysis, it was found that the amount of extractive-free stem and hot water-soluble extractives were the variables that separated the species, followed by cellulose and hemicelluloses since the seedlings developed mainly parenchyma cells and the conductive tissue showed vessel elements and wide-band tracheids, both with annular and helical thickenings in secondary walls. The type of lignin with the highest percentage was guaiacyl-type, which is accumulated mainly in the vessels, providing rigidity. Whereas in the wide-band tracheids from metaxylem, syringyl lignin accumulated in the secondary walls S2 and S3, which permits an efficient flow of water and gives the plant the ability to endure difficult conditions during seedling development. Only one species can be considered to have paedomorphosis since the conductive elements had a similar chemistry in primary and secondary xylem.

9.
Front Plant Sci ; 9: 1518, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386367

RESUMO

Wood lignin composition strongly depends on anatomical features and it has been used as a marker for characterizing major plant groups. Wood heterogeneity in Cactaceae is involved in evolutionary and adaptive processes within this group; moreover, it is highly correlated to the species growth form. Here we studied the lignin structure from different types of woods in four Cactaceae species with different stem morphologies (Pereskia lychnidiflora, tree/fibrous wood; Opuntia streptacantha and Pilosocereus chrysacanthus, tree/succulent fibrous wood; Ferocactus hamatacanthus, cylindrical stem/dimorphic wood) in order to determine their relationship with the wood anatomy in an evolutionary-adaptive context. Dioxane lignin was isolated and analyzed by pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The main linkages are the ß-O-4' ether (67-85%), the ß-ß' resinol (10-26%) and the ß-5' and α-O-4' linkages of the phenylcoumaran structures (≤7%). Spirodienone structures have a considerable abundance (5%) in the dimorphic wood of F. hamatacanthus. In addition, low contents (≤3%) of α,ß-diaryl ether, α-oxidized ß-O-4' ether and dibenzodioxocin structures were found. The sinapyl- and coniferyl acetates are not part of the wood lignin in any of the studied species. The low (≤5%) γ-acetylation in the F. hamatacanthus and P. chrysacanthus wood lignin is here interpreted as an evidence of a high specialization of the wood elements in the conduction/storage of water. The lignin of the studied Cactaceae is composed predominantly of guaiacyl and syringyl units (S/G: 0.9-16.4). High abundance of syringyl units (62-94%) in three of the four species is considered as a defense mechanism against oxidative agents, it is a very conspicuous trait in the most succulent species with dimorphic wood. Furthermore, it is also associated with ferulates and the herein called γ-acetylated guaiacyl-syringaresinol complexes acting as nucleation sites for lignification and as cross-links between lignin and carbohydrates at the wide-band tracheid-fiber junctions.

10.
Am J Bot ; 105(8): 1329-1344, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30091785

RESUMO

PREMISE OF THE STUDY: Pinaceae have a rich but enigmatic early fossil record, much of which is represented by permineralized seed cones. Our incomplete knowledge of morphology and anatomy in living and extinct species poses an important barrier to understanding their phylogenetic relationships and timing of diversification. METHODS: We expanded a morphology matrix to 46 fossil and 31 extant Pinaceae species, mainly adding characters from stem and leaf anatomy and seed cones. Using parsimony and Bayesian inference, we compared phylogenetic relationships for extant taxa with and without fossils from the morphology matrix combined with an alignment of plastid gene sequences. KEY RESULTS: Combined analysis of morphological and molecular characters resulted in a phylogeny of extant Pinaceae that was robust at all nodes except those relating to the interrelationships of Pinus, Picea, and Cathaya and the position of Cedrus. Simultaneous analysis of all fossil and extant species did not result in changes in the relationships among the extant species but did greatly reduce branch support. We found that the placement of most fossils was sensitive to the method of phylogenetic reconstruction when analyzing them singly with the extant species. CONCLUSIONS: A robust phylogenetic hypothesis for the main lineages of Pinaceae is emerging. Most Early Cretaceous fossils are stem or crown lineages of Pinus, but close relationships also were found between fossils and several other extant genera. The phylogenetic position of fossils broadly supports the existence of extant genera in the Lower Cretaceous.


Assuntos
Fósseis , Filogenia , Pinaceae/genética , Pinaceae/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA