Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genesis ; 55(1-2)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28095644

RESUMO

Collective cell migration is essential in many fundamental aspects of normal development, like morphogenesis, organ formation, wound healing, and immune responses, as well as in the etiology of severe pathologies, like cancer metastasis. In spite of the huge amount of data accumulated on cell migration, such a complex process involves many molecular actors, some of which still remain to be functionally characterized. One of these signals is the heterotrimeric G-protein pathway that has been studied mainly in gastrulation movements. Recently we have reported that Ric-8A, a GEF for Gα proteins, plays an important role in neural crest migration in Xenopus development. Xenopus neural crest cells, a highly migratory embryonic cell population induced at the border of the neural plate that migrates extensively in order to differentiate in other tissues during development, have become a good model to understand the dynamics that regulate cell migration. In this review, we aim to provide sufficient evidence supporting how useful Xenopus model with its different tools, such as explants and transplants, paired with improved in vivo imaging techniques, will allow us to tackle the multiple signaling mechanisms involved in neural crest cell migration.


Assuntos
Movimento Celular/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Morfogênese/genética , Xenopus laevis/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Crista Neural/crescimento & desenvolvimento , Crista Neural/metabolismo , Placa Neural/crescimento & desenvolvimento , Placa Neural/metabolismo , Transdução de Sinais/genética , Xenopus laevis/crescimento & desenvolvimento
2.
Front Cell Neurosci ; 7: 80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23761733

RESUMO

The central nervous system (CNS) develops from the neural tube, a hollow structure filled with embryonic cerebrospinal fluid (eCSF) and surrounded by neuroepithelial cells. Several lines of evidence suggest that the eCSF contains diffusible factors regulating the survival, proliferation, and differentiation of the neuroepithelium, although these factors are only beginning to be uncovered. One possible candidate as eCSF morphogenetic molecule is SCO-spondin, a large glycoprotein whose secretion by the diencephalic roof plate starts at early developmental stages. In vitro, SCO-spondin promotes neuronal survival and differentiation, but its in vivo function still remains to be elucidated. Here we performed in vivo loss of function experiments for SCO-spondin during early brain development by injecting and electroporating a specific shRNA expression vector into the neural tube of chick embryos. We show that SCO-spondin knock down induces an increase in neuroepithelial cells proliferation concomitantly with a decrease in cellular differentiation toward neuronal lineages, leading to hyperplasia in both the diencephalon and the mesencephalon. In addition, SCO-spondin is required for the correct morphogenesis of the posterior commissure and pineal gland. Because SCO-spondin is secreted by the diencephalon, we sought to corroborate the long-range function of this protein in vitro by performing gain and loss of function experiments on mesencephalic explants. We find that culture medium enriched in SCO-spondin causes an increased neurodifferentiation of explanted mesencephalic region. Conversely, inhibitory antibodies against SCO-spondin cause a reduction in neurodifferentiation and an increase of mitosis when such explants are cultured in eCSF. Our results suggest that SCO-spondin is a crucial eCSF diffusible factor regulating the balance between proliferation and differentiation of the brain neuroepithelial cells.

3.
J Cell Biochem ; 113(9): 2797-805, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22511245

RESUMO

Signaling via heterotrimeric G-proteins is evoked by agonist-mediated stimulation of seven transmembrane spanning receptors (GPCRs). During the last decade it has become apparent that Gα subunits can be activated by receptor-independent mechanisms. Ric-8 belongs to a highly conserved protein family that regulates heterotrimeric G-protein function, acting as a non-canonical guanine nucleotide exchange factors (GEF) over a subset of Gα subunits. In this review we discuss the roles of Ric-8 in the regulation of diverse cell functions, emphasizing the contribution of its multiple domain protein structure in these diverse functions.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Animais , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Modelos Biológicos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
4.
Gene Expr Patterns ; 11(7): 401-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21726669

RESUMO

RIC-8 is a highly conserved protein that promotes G protein signaling as it acts as a Guanine nucleotide Exchanging Factor (GEF) over a subset of Gα subunits. In invertebrates, RIC-8 plays crucial roles in synaptic transmission as well as in asymmetric cell division. As a first step to address further studies on RIC-8 function in vertebrates, here we have cloned a ric-8 gene from Xenopus tropicalis (xtric-8) and determined its spatiotemporal expression pattern throughout embryogenesis. The xtric-8 transcript is expressed maternally and zygotically and, as development proceeds, it shows a dynamic expression pattern. At early developmental stages, xtric-8 is expressed in the animal hemisphere, whereas its expression is later restricted to neural tissues, such as the neural tube and the brain, as well as in the eye and neural crest-derived structures, including those of the craniofacial region. Together, our findings suggest that RIC-8 functions are related to the development of the nervous system.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas de Xenopus/genética , Xenopus/embriologia , Xenopus/genética , Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Divisão Celular Assimétrica/genética , Encéfalo/metabolismo , Clonagem Molecular , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Dados de Sequência Molecular , Tubo Neural/metabolismo , Transdução de Sinais , Transmissão Sináptica/genética , Distribuição Tecidual/genética , Proteínas de Xenopus/metabolismo
5.
J Cell Biochem ; 76(3): 368-75, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10649434

RESUMO

The Galpha subunits of heterotrimeric G proteins are constituted by a conserved GTPase "Ras-like" domain (RasD) and by a unique alpha-helical domain (HD). Upon GTP binding, four regions, called switch I, II, III, and IV, have been identified as undergoing structural changes. Switch I, II, and III are located in RasD and switch IV in HD. All Galpha known functions, such as GTPase activity and receptor, effector, and Gbetagamma interaction sites have been found to be localized in RasD, but little is known about the role of HD and its switch IV region. Through the construction of chimeras between human and Xenopus Gsalpha we have previously identified a HD region, encompassing helices alphaA, alphaB, and alphaC, that was responsible for the observed functional differences in their capacity to activate adenylyl cyclase (Antonelli et al. [1994]: FEBS Lett 340:249-254). Since switch IV is located within this region and contains most of the nonconservative amino acid differences between both Gsalpha proteins, in the present work we constructed two human Gsalpha mutant proteins in which we have changed four and five switch IV residues for the ones present in the Xenopus protein. Mutants M15 (hGsalphaalphaS133N, M135P, P138K, P143S) and M17 (hGsalphaalphaS133N, M135P, V137Y, P138K, P143S) were expressed in Escherichia coli, purified, and characterized by their ability to bind GTPgammaS, dissociate GDP, hydrolyze GTP, and activate adenylyl cyclase. A decreased rate of GDP release, GTPgammaS binding, and GTP hydrolysis was observed for both mutants, M17 having considerably slower kinetics than M15 for all functions tested. Reconstituted adenylyl cyclase activity with both mutants showed normal activation in the presence of AlF(4)(-), but a decreased activation with GTPgammaS, which is consistent with the lower GDP dissociating rate they displayed. These data provide new evidence on the role that HD is playing in modulating the GDP/GTP exchange of the Gsalpha subunit.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Adenilil Ciclases/metabolismo , Sequência de Bases , Primers do DNA/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Expressão Gênica , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Técnicas In Vitro , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tripsina
6.
FEBS Lett ; 441(3): 437-40, 1998 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-9891986

RESUMO

Using the yeast two-hybrid system, we studied the physical interaction between the complete C1 and C2 cytosolic domains of Xenopus laevis type 9 (xl9C1, xl9C2) and the C2 domain of rat type 6 (r6C2) adenylyl cyclase (AC). Heterodimerization between xl9C1 and xl9C2 and homodimerization between C2 (but not C1) domains was observed. Interaction between C2 and human G alpha s (hG alpha s) was also detected and was dependent on G alpha s activation. In contrast X. laevis G alpha s (xlG alpha s), which is 92% identical to hG alpha s, was unable to interact with any of the three AC cytosolic domains tested, corroborating previous findings that showed no effector activation. Through the construction of chimeras, we demonstrated that the amino-terminal half of xlG alpha s was responsible for the lack of interaction with AC. Chimeras between mouse G alpha i2 and G alpha s (N-mG alpha i2/C-G alpha s), that have previously shown to activate AC to a higher extent than wild-type G alpha s, also interacted with the C2 cytosolic domain and with a higher affinity. Interestingly, N-mG alpha i2/C-xlG alpha s chimera was not only able to interact with C2 but also with the C1 cytosolic domain.


Assuntos
Adenilil Ciclases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Animais , Western Blotting , Clonagem Molecular , Citosol/enzimologia , Proteínas de Ligação ao GTP/genética , Humanos , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Xenopus laevis , beta-Galactosidase/genética
7.
FEBS Lett ; 404(1): 91-4, 1997 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-9074644

RESUMO

We have cloned a cDNA that encodes a novel Xenopus laevis oocyte adenylyl cyclase (xlAC) using oligonucleotides against conserved mammalian adenylyl cyclase regions. The isolated cDNA is 4372 bp long with an open reading frame of 4065 nucleotides which encodes a protein of 1355 amino acids. Comparison of the deduced amino acid sequence with previously cloned mammalian adenylyl cyclases shows a low identity, 19.7% with type 2 rat adenylyl cyclase and 24.2% with type 4 rat adenylyl cyclase, indicating that this Xenopus isoform represents a new member of this protein family. Gene expression studies of the xlAC by reverse PCR showed that this gene is expressed in all oogenesis stages but not during early embryogenesis. Expression of the xlAC in COS-7 cells resulted in increased basal AC activity, that was stimulated by forskolin, Gpp(NH)p and aluminium fluoride, and was insensitive to calcium and calcium-calmodulin (Ca2(+)-CaM).


Assuntos
Adenilil Ciclases/biossíntese , Adenilil Ciclases/genética , Oócitos/enzimologia , Adenilil Ciclases/química , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Clonagem Molecular , DNA Complementar/isolamento & purificação , Dados de Sequência Molecular , Oócitos/química , Oócitos/crescimento & desenvolvimento , Oogênese/genética , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , RNA Mensageiro/análise , Transfecção , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA