Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Neotrop Entomol ; 52(5): 921-931, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37584879

RESUMO

Tetrastichus howardi (Olliff) (Hymenoptera: Eulophidae) parasitizes the diamond back moth Plutella xylostella (L.) (Lepidoptera: Plutellidae), but not much is known about its potential as a biocontrol agent. A rearing protocol has been established for this parasitoid on pupae of the factitious host Tenebrio molitor (L.) (Coleoptera: Tenebrionidae), with the aim of releasing it in the field to manage several lepidopteran species. The potential population growth of a parasitoid can be measured through fertility life tables and provide supporting information for using T. howardi in the management of P. xylostella. Also, the fitness and behavior of T. howardi reared on a factitious host can be indicators of its potential to control P. xylostella. Thus, in this study, the fertility life table parameters of T. howardi parasitizing P. xylostella were determined, as well as the effects of the natal host on the behavior of T. howardi towards host volatiles and parasitism rate. The results showed that net reproduction rate (Ro) and the intrinsic rate of population growth (rm) of T. howardi parasitizing P. xylostella were 13.6 (♀/♀) and 0.124 (♀/♀*day), respectively, whereas the mean generation time was 20.9 days. Moreover, the natal host (T. molitor or P. xylostella) did not affect the fitness, parasitism rate, or olfactory response of T. howardi. In general, regardless of the natal host, parasitoid females responded to volatiles of both host species and exhibited the same rate of parasitism on P. xylostella. Therefore, T. howardi reared on the factitious host maintains its attraction and potential to parasitize P. xylostella, and can contribute to the biological control of this pest.


Assuntos
Besouros , Himenópteros , Mariposas , Tenebrio , Feminino , Animais , Himenópteros/fisiologia , Tábuas de Vida , Olfato , Fertilidade , Larva
2.
Insects ; 14(7)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37504605

RESUMO

Although the boll weevil (BW), Anthonomus grandis grandis (Coleoptera: Curculionidae) has been attributed to the significant losses caused to cotton yield in the Americas, the categorization as a quarentenary pest in places where it is still not occurring has increased its relevance worldwide. In areas where it is widespread, pest suppression relies on many broad-spectrum insecticide applications. However, other control tactics are sought. Considering that early-flowering cultivars escape from boll weevil infestation, we investigated if three different planting dates (November, December, and January) could alter the plant life cycle, allowing the plants to escape from boll weevil infestation. Field trials were run in two seasons (2014/2015 and 2017/2018), and variables (days required to reach each flowering stage, fruiting plant structures-undamaged and damaged by the BW, and totals-number of boll weevils on plants and that had emerged from fallen structures on the ground) were assessed over 29 and 33 weeks, respectively. Based on the number of days required to initiate and terminate the flowering stage, the time to reach the economic threshold (ET), the number of undamaged, damaged, and the total reproductive structures, we concluded that planting dates in December for the Central Cerrado of Brazil should be preferred over the other two tested dates. Cultivations run at this planting date, anticipating the flowering period initiation and termination, reduced infested flowering structures, and delayed the decision making to control the pest, when compared to the other two planting dates.

3.
Behav Processes ; 192: 104500, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34509563

RESUMO

Ladybird beetles present as key predator of many agricultural pests. Among them, Eriopis connexa stands out due some important traits for pest management programs such as common occurrence, population selected for resistance to pyrethroid insecticides, and possibility to be commercially available by rearing using alternative prey. Despite that, little is known about the role of polyandry and its effect on paternity in this species. Ladybird beetles engage in multiple matings, raising questions about the benefits of polyandry and paternity. We studied the selection of mating pair, sperm precedence, and offspring paternity by performing experiments on (1) the age of sexual maturity, (2) the frequency and refractory mating behavior within a photophase period, (3) the preference of insecticide-susceptible females to mate with either susceptible or resistant male phenotypes; and (4) the effect of multiple matings, on progeny paternity. Sexual maturity in E. connexa was found to begin within 3 days of adult emergence for both sexes, but fully developed after 5 days. The highest frequency of mating exhibited by sexual mature pairs occurred within first hour of pairing and the phenotype for insecticide resistance did not affect the choice of a mating partner. The resistance trait marker in the resistant beetle phenotype indicates that progeny paternity results from a mixture of available sperm and do not depend on mating order. These data suggest that released beetles would have a simple prospect for progeny production for both insecticide resistant and susceptible beetles.


Assuntos
Besouros , Piretrinas , Animais , Pai , Feminino , Humanos , Resistência a Inseticidas , Masculino , Reprodução , Comportamento Sexual Animal , Espermatozoides
4.
Bull Entomol Res ; 111(5): 605-615, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34112270

RESUMO

Tenuisvalvae notata (Mulsant) (Coccinellidae) is a predatory ladybird beetle native to South America. It specializes in mealybugs prey (Pseudococcidae), but relatively little is known about its ecology. In contrast, the ladybird beetle Cryptolaemus montrouzieri Mulsant (Coccinellidae) is indigenous to Australia and has been introduced to many countries worldwide including Brazil for biological control of mealybugs. The potential impacts of these introductions to native coccinellids have rarely been considered. The software CLIMEX estimated the climate suitability for both species as reflected in the Ecoclimatic Index (EI). Much of South America, Africa, and Australia can be considered climatically suitable for both species, but in most cases, the climate is considerably more favorable for C. montrouzieri than T. notata, especially in South America. The CLIMEX model also suggests seasonal differences in growth conditions (e.g. rainfall and temperature) that could affect the phenology of both species. These models suggest that few locations in South America would be expected to provide T. notata climatic refugia from C. montrouzieri. Although other ecological factors will also be important, such as prey availability, this analysis suggests a strong potential for displacement of a native coccinellid throughout most of its range as a consequence of the invasion by an alien competitor.


Assuntos
Clima , Besouros , Distribuição Animal , Animais , Espécies Introduzidas , Estações do Ano , América do Sul
5.
Pest Manag Sci ; 77(10): 4400-4410, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33991055

RESUMO

BACKGROUND: Insecticide resistance in arthropods is an inherited trait that has become a major cause of insect pest control failure. Monitoring the level of susceptibility and characterization of the type of resistance of key pest species aims to determine the risk of resistance selection in time to take action to mitigate control failures. Seven populations of the boll weevil, Anthonomus grandis grandis, collected from cotton fields in the Semiarid and Cerrado areas of Brazil, were screened for their resistance to malathion and beta-cyfluthrin, insecticides widely recommended for control of boll weevil and other pests. RESULTS: The levels of adult mortality were variable for beta-cyfluthrin (0-82%) but invariant (100%) for malathion. Bioassays of concentration-mortality were used to determine lethal concentrations (LCs) for each insecticide. The LC-values corroborate the lack of resistance to field rates of malathion but high levels of resistance to beta-cyfluthrin from 62.7- to 439.7-fold. Weevils resistant to beta-cyfluthrin were found through genome sequencing to possess a kdr mutation through the L1014F substitution in the voltage gated-sodium channel gene. CONCLUSIONS: This study found boll weevil resistance to beta-cyfluthrin to be not mediated by carboxylesterases, but with cross-resistance to DDT and carbaryl, and kdr mutation as the major mechanism of the resistance in our samples. Caution is recommended in further use of beta-cyfluthrin against boll weevil due to potential resistance. Monitoring studies using other boll weevil populations are recommended to determine the geographic pattern and extent of pyrethroid resistance. © 2021 Society of Chemical Industry.


Assuntos
Piretrinas , Gorgulhos , Animais , Controle de Insetos , Nitrilas/farmacologia , Piretrinas/farmacologia , Gorgulhos/genética
6.
Pest Manag Sci ; 77(3): 1339-1347, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33094509

RESUMO

BACKGROUND: Immature stages of boll weevil complete development endophytically leaving only the adult stage accessible for chemical control. We tested the hypothesis that boll weevil colonization of the cotton plants significantly affects their exposure to sprayed insecticides. We determined the adult dispersal toward and within cotton plants, lethal time (LT), and residual control by recommended insecticides (malathion, carbosulfan, thiamethoxam, fipronil, beta-cyfluthrin, lambda-cyhalothrin, and thiamethoxam + lambda-cyhalothrin) through dried residue exposure and residual control regarding the leaf position in the upper and the lower thirds of the treated plant canopy. RESULTS: Newly emerged adults from fallen buds reached the cotton plants by walking (80%) and most of the time settling on cotton bolls in the lower part of the plants (78%). Irrespective of sex and mating status, adults released on the upper part of the plant remained longer on the same release site than the lower part, with some individuals remaining up to 50 h on the same flower bud. The shortest LT90 was found with thiamethoxam (106 h). Fipronil and malathion, respectively, provided the longest (>144 h) and shortest (24 h) residual control times and caused boll weevil mortality above 80%. CONCLUSIONS: These findings suggest that weevils accessing the cotton plants exhibited within-plant distribution that minimizes their contact with insecticide residue on plant foliage. Furthermore, short residual control with malathion, the most used insecticide against boll weevil, and the low susceptibility exhibited by the tested population to pyrethroids highlight the current challenges faced for boll weevil control in Brazilian cotton fields. © 2020 Society of Chemical Industry.


Assuntos
Inseticidas , Gorgulhos , Animais , Brasil , Gossypium , Malation
7.
J Econ Entomol ; 113(4): 1881-1887, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32405643

RESUMO

Tomato plants host various herbivores, including the Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), recently introduced into South and Central America. It is a harmful pest for tomato crops, damaging mainly the flowers and fruits. The assessment of losses and the establishment of economic injury level (EIL) and economic threshold (ET) are core steps toward establishing a control program. We determined losses caused by H. armigera on processing tomato and estimated EIL/ET values. Trials were run during two growing seasons using tomato plants caged in the field. The field cage experiment consisted of six densities of H. armigera second instar larvae (0, 1, 3, 6, 12, and 24 larvae per row meter) at two infestations periods spaced 15 d apart with the first infestation done 90 d after transplanting. The larvae were placed individually on the third upper fully developed leaf. The number of healthy and damaged fruits, size, and weight of the fruits were measured. Yield losses as a function of infestation of 1-24 larvae per row meter ranged from 4 to 34% and resulted in a yield reduction of 1.22-12.77 kg per row meter. The EIL ranged from 1.41 to 1.72 and from 2.11 to 2.58 larvae per row meter of plants in 2017 and 2018 cropping seasons, respectively. Helicoverpa armigera causes significant reduction of tomato yield. These EIL values will enable better control decision-making in processing tomato.


Assuntos
Lepidópteros , Mariposas , Solanum lycopersicum , Animais , Brasil , América Central , Larva
8.
Ecotoxicol Environ Saf ; 184: 109669, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31536847

RESUMO

Cotton hosts a variety of arthropod pests requiring intensive control mostly with insecticides, which in turn may impact beneficial insects and the environment. Therefore, insect control in cotton fields preconizes the use of selective insecticides that offer pest control but conserve natural enemies. In this work, we measured the impact of recommended insecticides on the abundance of predatory insects and predation upon sentinel preys in the field. Further, the survival of four key selected predatory insects of cotton ecosystem, representing chewing and sucking feeding habits and different pest species attacked [Chrysoperla externa Hagen, Eriopis connexa (Germar), Podisus nigrispinus (Dallas) and Orius insidiosus (Say)], were assessed when exposed to the dried residues of the tested insecticides. Mortality of sentinel prey caused by natural enemies was higher in areas treated with selective insecticides relative to the non-selective ones, and most of time similar to the untreated areas. Furthermore, areas treated with non-selective insecticides experienced prolonged impact between sprays depending on the insecticide applied. Seasonal abundance of predatory insects was 2× greater in fields under selective and untreated fields compared to those under non-selective recommendation. Survival of predators exposed to the dried residues of the selective insecticides pymetrozine, chlorantraniliprole, pyriproxyfen, and cyantraniliprole were greater than when exposed to the non-selective lambda-cyhalothrin, malathion, dimethoate, and thiamethoxam. Among the non-selective insecticides, malathion and dimethoate exhibited shorter residual time compared to the thiamethoxam and lambda-cyhalothrin + thiamethoxam. Therefore, the recommendation of selective insecticides provides benefits for cotton pest management by maintaining the action of the natural enemies present in the field.


Assuntos
Besouros/efeitos dos fármacos , Gossypium/crescimento & desenvolvimento , Heterópteros/efeitos dos fármacos , Controle de Insetos/métodos , Inseticidas/farmacologia , Comportamento Predatório/efeitos dos fármacos , Animais , Ecossistema , Modelos Teóricos
9.
J Econ Entomol ; 112(5): 2222-2228, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31216009

RESUMO

Immature stages of the boll weevil, Anthonomus grandis grandis Boh. (Coleoptera: Curculionidae), develop protected inside cotton fruiting structures. Therefore, the adult beetles have become the main target of insecticide applications. The use of insect growth regulators (IGRs) is recommended against immatures, even though they may also affect the survival and reproductive traits of adult insects. The present study evaluated the impact of a juvenile hormone analog (pyriproxyfen), an ecdysteroid agonist (methoxyfenozide), and a chitin biosynthesis inhibitor (lufenuron) on adult cotton boll weevils, a key cotton pest. Mated and virgin beetles were treated by feeding them contaminated squares and cotton leaf discs that were previously immersed into pyriproxyfen, methoxyfenozide, and lufenuron solutions at field-rate concentrations. After exposure, treated couples were caged onto cotton plants, and survival, fecundity, and egg viability were evaluated. The IGRs neither affected the survival nor fecundity of adult boll weevils. On the other hand, egg viability was significantly reduced by lufenuron, regardless of whether the females were treated premating or postmating or whether their pairs were either treated or untreated. However, egg viability increased as the females aged since the initial exposure date to lufenuron, indicating a potential transovarial effect of this insecticide. Our results indicate that pyriproxyfen and methoxyfenozide do not affect adult boll weevils, whereas lufenuron temporarily reduces the egg viability of this key cotton pest.


Assuntos
Besouros , Inseticidas , Gorgulhos , Animais , Feminino , Gossypium , Hormônios Juvenis , Reprodução
10.
J Econ Entomol ; 112(4): 1688-1694, 2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30927546

RESUMO

The control of boll weevil, Anthonomus grandis grandis Boh., relies primarily on synthetic insecticides. Although insecticides are registered to spray cotton fields against boll weevils, only a few offer satisfactory control and most have broad-spectrum action. Alternatively, spinosyns have been recommended against lepidopteran pest species in cotton and are considered comparatively of reduced risk to nontargets. The susceptibility of nine populations of boll weevil to spinosad and spinetoram was determined through dried residue on squares and cotton leaves. Furthermore, control efficacy of spinosad and spinetoram compared with the standard organophosphate malathion was determined for caged adults at two different positions within the plant canopy or treated cotton leaves after different spray intervals. Boll weevil susceptibility varied across the nine populations and tested spinosyns. The lethal concentrations (LC50s and LC90s) varied from 8.62 to 32.25 and 49.86 to 281.70 mg a.i./l for spinosad and from 2.17 to 15.36 and 8.58 to 69.36 mg a.i./l for spinetoram. The location of boll weevil within the plant canopy affected the insecticide efficacy with higher mortality when caged on upper parts rather than on lower parts of cotton plants (>85% vs <45% of control) across all three insecticides. In addition, dried residues of spinosyns resulted in adult mortality >80% until the end of the evaluation period (8 d), while the standard malathion caused only 10% at this last evaluation time. Thus, we can conclude that both spinosyns promoted prolonged adult mortality using recommended field rates compared with the standard malathion.


Assuntos
Besouros , Inseticidas , Gorgulhos , Animais , Gossypium , Malation
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA