Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 283: 114618, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901550

RESUMO

PURPOSE: to explore lower limb muscle activity concerning limb dominance, as well as variations in force and power during the standing up and sitting down phases of the instrumented sit-to-stand-to-sit test in sedentary individuals, across isokinetic and isotonic modalities. METHODS: 33 sedentary individuals underwent testing using a functional electromechanical dynamometer in both isokinetic and isotonic modes, accompanied by surface electromyography. RESULTS: In the isokinetic mode, the non-dominant gastrocnemius medialis and vastus medialis exhibited significantly (p < 0.05) higher muscle activity values during the standing up and sitting down phase compared to dominant counterparts. In the isotonic mode standing up phase, significant differences in muscle activity were noted for non-dominant gastrocnemius medialis, vastus medialis, and biceps femoris compared to their dominant counterparts. The sitting down phase in isotonic mode showed higher muscle activity for non-dominant vastus medialis compared to dominant vastus medialis. Regard to performance outcomes, significantly lower (p < 0.0001) values were observed for standing up (12.7 ± 5.1 N/kg) compared to sitting down (15.9 ± 6.1 N/kg) peak force, as well as for standing up (18.7 ± 7.8 W/kg) compared to sitting down (25.9 ± 9.7 W/kg) peak power in isokinetic mode. In isotonic mode, lower values were found for sitting down (6.5 (6.3-7.1) N/kg) compared to standing up (7.8 (7.3-8.9) N/kg) peak force and for sitting down (18.5 (13.2-21.7) W/kg) compared to standing up (33.7 (22.8-41.6) W/kg) peak power. CONCLUSIONS: Limb dominance influences lower-limb muscle activity during the instrumented sit-to-stand-to-sit test, and the choice of testing mode (isokinetic or isotonic) affects muscle engagement and performance outcomes.


Assuntos
Eletromiografia , Extremidade Inferior , Músculo Esquelético , Comportamento Sedentário , Humanos , Masculino , Músculo Esquelético/fisiologia , Adulto , Feminino , Extremidade Inferior/fisiologia , Adulto Jovem , Lateralidade Funcional/fisiologia , Postura Sentada , Força Muscular/fisiologia
2.
Nutrients ; 16(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732571

RESUMO

The use of creatine monohydrate (Cr) in professional soccer is widely documented. However, the effect of low doses of Cr on the physical performance of young soccer players is unknown. This study determined the effect of a low dose of orally administered Cr on muscle power after acute intra-session fatigue in young soccer players. Twenty-eight young soccer players (mean age = 17.1 ± 0.9 years) were randomly assigned to either a Cr (n = 14, 0.3 g·kg-1·day-1 for 14 days) or placebo group (n = 14), using a two-group matched, double-blind, placebo-controlled design. Before and after supplementation, participants performed 21 repetitions of 30 m (fatigue induction), and then, to measure muscle power, they performed four repetitions in half back squat (HBS) at 65% of 1RM. Statistical analysis included a two-factor ANOVA (p ˂ 0.05). Bar velocity at HBS, time: p = 0.0006, ŋp2 = 0.22; group: p = 0.0431, ŋp2 = 0.12, time × group p = 0.0744, ŋp2 = 0.02. Power at HBS, time: p = 0.0006, ŋp2 = 0.12; group: p = 0.16, ŋp2 = 0.06, time × group: p = 0.17, ŋp2 = 0.009. At the end of the study, it was found that, after the induction of acute intra-session fatigue, a low dose of Cr administered orally increases muscle power in young soccer players.


Assuntos
Creatina , Suplementos Nutricionais , Fadiga Muscular , Força Muscular , Futebol , Humanos , Futebol/fisiologia , Creatina/administração & dosagem , Adolescente , Método Duplo-Cego , Masculino , Fadiga Muscular/efeitos dos fármacos , Administração Oral , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Desempenho Atlético/fisiologia , Atletas
3.
Sensors (Basel) ; 24(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202906

RESUMO

Most of the existing research has focused on jump plyometrics, where landing reaction forces must be dissipated among lower limb articulations. In contrast, the investigation of resisted plyometrics without jumping, devoid of such landing forces, remains relatively limited. This study aimed to (i) investigate the impact of resisted plyometrics without jumping at two knee flexion angles (60 and 90 degrees) on vastus muscle activity relative to limb dominance and (ii) assess strength, power, and work during the concentric-eccentric phases of these exercises. Thirty-one healthy participants underwent quantification of lower limb muscle amplitude, strength, power, and work during resisted plyometrics without jumping from both 60° and 90° knee flexion positions. After anthropometric evaluations, participants used a dynamometer with a load equal to 80% of body weight while wireless surface electromyography electrodes recorded data. Statistical analyses utilized paired t-tests or nonparametric equivalents and set significance at p ≤ 0.05. Results showed significantly higher muscle activity in the vastus medialis (VM) (dominant: 47.4%, p = 0.0008, rs = 0.90; nondominant: 54.8%, p = 0.047, rs = 0.88) and vastus lateralis (VL) (dominant: 46.9%, p = 0.0004, rs = 0.86; nondominant: 48.1%, p = 0.021, rs = 0.67) muscles when exercises started at 90° knee flexion, regardless of limb dominance. Substantial intermuscle differences occurred at both 60° (50.4%, p = 0.003, rs = 0.56) and 90° (54.8%, p = 0.005, rs = 0.62) knee flexion, favoring VM in the nondominant leg. Concentric and eccentric strength, power, and work metrics significantly increased when initiating exercises from a 90° position. In conclusion, commencing resisted plyometrics without jumping at a 90° knee flexion position increases VM and VL muscle activity, regardless of limb dominance. Furthermore, it enhances strength, power, and work, emphasizing the importance of knee flexion position customization for optimizing muscle engagement and functional performance.


Assuntos
Extremidade Inferior , Músculo Quadríceps , Humanos , Antropometria , Benchmarking , Exercício Físico
4.
Front Psychol ; 12: 724070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616338

RESUMO

The aim of this study was to assess drop jump (DJ) performance variables (jump height, contact time, and reactive strength index) concomitant to surface electromyography (sEMG) of lower limb muscles during DJs from different drop heights (intensities). The eccentric and concentric phase sEMG from the gastrocnemius medialis, biceps femoris, and vastus medialis muscles were assessed during all tests, with sEMG activity normalized to maximal voluntary isometric contraction (MVIC). In a cross-sectional, study, 10 amateur female volleyball players (age 22.1 ± 1.8 years; body mass 72.9 ± 15.2 kg; height 1.70 ± 0.08 m) completed DJs from six heights [15-90 cm (DJ15 to DJ90)]. During DJs there was no jump-target box to rebound on to. Results of one-way analysis of variance (ANOVA) showed that the jump height, contact time, and reactive strength index were not significantly (p > 0.05) different between drop heights. Mean biceps femoris eccentric and concentric sEMG ranged from 27 to 50%, although without significant differences between drop heights. Mean gastrocnemius medialis eccentric and concentric sEMG remained relatively constant (∼60-80% MVIC) across DJs heights, although eccentric values reached 90-120% MVIC from DJ75 to DJ90. Mean variations of ∼50-100% MVIC for eccentric and ∼50-70% MVIC for concentric sEMG activations were observed in the vastus medialis across DJs heights. The biceps femoris eccentric/concentric sEMG ratio during DJ45 (i.e., 1.0) was lower (p = 0.03) compared to the ratio observed after DJ90 (i.e., 3.2). The gastrocnemius medialis and vastus medialis eccentric/concentric sEMG ratio were not significantly different between drop heights. In conclusion, jumping performance and most neuromuscular markers were not sensitive to DJ height (intensity) in amateur female volleyball athletes.

5.
PeerJ ; 9: e11643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616590

RESUMO

BACKGROUND: As participants who engage in CrossFit training and competition perform a large volume of high intensity overhead activities, injuries to the shoulder are one of the most common in this sport. Previous research in other sports has indicated that the isokinetic force power profile of the shoulder joint (IPSJ) rotator muscles may assist in the prediction of shoulder injury. AIM: Therefore, the objective of this study was to determine the IPSJ in males engaged in CrossFit training at different competitive levels. METHODS: In a cross-sectional study design, participants (age, 24.1 ± 2.7 years) classified as 'beginner' (n = 6), 'intermediate' (n = 7) or 'advanced' (n = 9) provided informed consent to participate in this study. The IPSJ assessment involved rotational and diagonal movements, including internal and external shoulder rotator muscles, at both 180°.s-1 and 300°.s-1. The variables analysed were peak torque/body mass (%), mean power (W) and the external/internal peak torque/body mass ratio (%). A Kruskal-Wallis test was used to compare the IPSJ of the three groups, with Dunn's test used for post-hoc analysis. The alpha level was set at p < 0.05. RESULTS: The IPSJ showed greater torque and power values in those who competed at the advanced level as compared to those at a lower competitive level (i.e. intermediate, beginner). This was observed mainly for the internal rotation and internal diagonal movements at both 180°.s-1 and 300°.s-1. However, such differences between competitive levels were, in general, absent for the external rotation and external diagonal movements. Moreover, the participants from the advanced competitive level exhibited an imbalance of peak torque between the muscles responsible for the external-internal rotational and external-internal diagonal movements of the shoulder (i.e. peak torque external/internal ratio <66%), particularly in the dominant shoulder. CONCLUSION: These findings suggest greater development of the shoulder internal rotators and a higher probability of shoulder injury in CrossFit athletes at the advanced competitive level. Based on these results, participants engaged in CrossFit training and competition may wish to increase the volume of training for the shoulder external rotator muscles to complement the large increases in shoulder internal rotator strength that occur as a part of their regular training regimes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA