Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37755053

RESUMO

Beneficial associations are very important for plants and soil-dwelling microorganisms in different ecological niches, where communication by chemical signals is relevant. Among the chemical signals, the release of phytohormones by plants is important to establish beneficial associations with fungi, and a recently described association is that of the entomopathogenic ascomycete fungus Metarhizium with plants. Here, we evaluated the effect of four different phytohormones, synthetic strigolactone (GR24), sorgolactone (SorL), 3-indolacetic acid (IAA) and gibberellic acid (GA3), on the fungus Metarhizium guizhouense strain HA11-2, where the germination rate and hyphal elongation were determined at three different times. All phytohormones had a positive effect on germination, with GA3 showing the greatest effect, and for hyphal length, on average, the group treated with synthetic strigolactone GR24 showed greater average hyphal length at 10 h of induction. This work expands the knowledge of the effect of phytohormones on the fungus M. guizhouense, as possible chemical signals for the rapid establishment of the fungus-plant association.

2.
Cells ; 12(18)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37759461

RESUMO

Fungal alcohol dehydrogenases (ADHs) participate in growth under aerobic or anaerobic conditions, morphogenetic processes, and pathogenesis of diverse fungal genera. These processes are associated with metabolic operation routes related to alcohol, aldehyde, and acid production. The number of ADH enzymes, their metabolic roles, and their functions vary within fungal species. The most studied ADHs are associated with ethanol metabolism, either as fermentative enzymes involved in the production of this alcohol or as oxidative enzymes necessary for the use of ethanol as a carbon source; other enzymes participate in survival under microaerobic conditions. The fast generation of data using genome sequencing provides an excellent opportunity to determine a correlation between the number of ADHs and fungal lifestyle. Therefore, this review aims to summarize the latest knowledge about the importance of ADH enzymes in the physiology and metabolism of fungal cells, as well as their structure, regulation, evolutionary relationships, and biotechnological potential.


Assuntos
Cirurgia Bariátrica , Etanol , Aldeídos , Evolução Biológica , Oxirredutases
3.
Appl Microbiol Biotechnol ; 105(21-22): 8019-8032, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34655320

RESUMO

Nitroalkanes such as nitromethane, nitroethane, 1-nitropropane (1NP), and 2-nitropropane (2NP), derived from anthropogenic activities, are hazardous environmental pollutants due to their toxicity and carcinogenic activity. In nature, 3-nitropropionate (3NPA) and its derivatives are produced as a defense mechanism by many groups of organisms, including bacteria, fungi, insects, and plants. 3NPA is highly toxic as its conjugate base, propionate-3-nitronate (P3N), is a potent inhibitor of mitochondrial succinate dehydrogenase, essential to the tricarboxylic acid cycle, and can inhibit isocitrate lyase, a critical enzyme of the glyoxylate cycle. In response to these toxic compounds, several organisms on the phylogenetic scale express genes that code for enzymes involved in the catabolism of nitroalkanes: nitroalkane oxidases (NAOs) and nitronate monooxygenases (NMOs) (previously classified as nitropropane dioxygenases, NPDs). Two types of NMOs have been identified: class I and class II, which differ in structure, catalytic efficiency, and preferred substrates. This review focuses on the biochemical properties, structure, classification, and physiological functions of NMOs, and offers perspectives for their in vivo and in vitro applications. KEY POINTS: • Nitronate monooxygenases (NMOs) are key enzymes in nitroalkane catabolism. • NMO enzymes are involved in defense mechanisms in different organisms. • NMO applications include organic synthesis, biocatalysts, and bioremediation.


Assuntos
Alcanos , Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Filogenia
4.
Appl Microbiol Biotechnol ; 104(7): 2987-2997, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32060694

RESUMO

Metarhizium species are the most abundant fungi that can be isolated from soil, with a well-known biopesticide capacity. Metarhizium recognizes their hosts when the conidium interacts with insects, where the fungi are in contact with the hydrocarbons of the outermost lipid layer cuticle. These cuticular hydrocarbons comprise a mixture of n-alkanes, n-alkenes, and methyl-branched chains. Metarhizium can degrade insect hydrocarbons and use these hydrocarbons for energy production and the biosynthesis of cellular components. The metabolism of nitroalkanes involves nitronate monooxygenase activity. In this work, we isolated a family of six genes with potential nitronate monooxygenase activity from Metarhizium brunneum. The six genes were expressed in Escherichia coli, and the nitronate monooxygenase activity was verified in the recombinant proteins. Additionally, when the conidia of M. brunneum were grown in medium with nitroalkanes, virulence against Plutella xylostella increased. Furthermore, we analyzed the expression of the six Npd genes during the infection to this insect, which showed differential expression of the six Npd genes during infection.


Assuntos
Agentes de Controle Biológico/metabolismo , Dioxigenases/metabolismo , Metarhizium/enzimologia , Mariposas/microbiologia , Alcanos/metabolismo , Animais , DNA Fúngico/genética , Dioxigenases/genética , Hidrocarbonetos/metabolismo , Proteínas de Insetos/metabolismo , Metarhizium/genética , Metarhizium/patogenicidade , Controle Biológico de Vetores , Virulência/genética
5.
J Microbiol ; 57(7): 606-617, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31124047

RESUMO

Mucor circinelloides is a dimorphic Zygomycete fungus that produces ethanol under aerobic conditions in the presence of glucose, which indicates that it is a Crabtree-positive fungus. To determine the physiological role of the alcohol dehydrogenase (ADH) activity elicited under these conditions, we obtained and characterized an allyl alcohol-resistant mutant that was defective in ADH activity, and examined the effect of adh mutation on physiological parameters related to carbon and energy metabolism. Compared to the Adh+ strain R7B, the ADH-defective (Adh-) strain M5 was unable to grow under anaerobic conditions, exhibited a considerable reduction in ethanol production in aerobic cultures when incubated with glucose, had markedly reduced growth capacity in the presence of oxygen when ethanol was the sole carbon source, and exhibited very low levels of NAD+-dependent alcohol de-hydrogenase activity in the cytosolic fraction. Further characterization of the M5 strain showed that it contains a 10-bp deletion that interrupts the coding region of the adhl gene. Complementation with the wild-type allele adh1+ by transformation of M5 remedied all the defects caused by the adh1 mutation. These findings indicate that in M. circinelloides, the product of the adh1 gene mediates the Crabtree effect, and can act as either a fermentative or an oxidative enzyme, depending on the nutritional conditions, thereby participating in the association between fermentative and oxidative metabolism. It was found that the spores of M. circinelloides possess low mRNA levels of the ethanol assimilation genes (adl2 and acs2), which could explain their inability to grow in the alcohol.


Assuntos
Álcool Desidrogenase/fisiologia , Etanol/metabolismo , Glucose/metabolismo , Mucor/enzimologia , Álcool Desidrogenase/genética , Metabolismo Energético , Fermentação , Mucor/genética , Oxirredução
6.
Microb Pathog ; 125: 93-95, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30201591

RESUMO

Immune priming in invertebrates occurs when the first contact with a pathogen/parasite enhances resistance after a second encounter with the same strain or species. Although the mechanisms are not well understood, there is evidence that priming the immune response of some hosts leads to greater pro-oxidant production. Parasites, in turn, might counteract the host attack with antioxidants. Virulent pathogen strains may therefore mask invertebrate immune priming. For example, different parasite species overexpress catalase as a virulence factor to resist host pro-oxidants, possibly impairing the immune priming response. The aim of this study was firstly to evaluate the specificity of immune priming in Tenebrio molitor when facing homologous and heterologous challenges. Secondly, homologous challenges were carried out with two Metarhizium anisopliae strains (Ma10 and CAT). The more virulent strain (CAT) overexpresses catalase, an antioxidant that perhaps impairs a host immune response mediated by reactive oxygen species (ROS). Indeed, T. molitor larvae exhibited better immune priming (survival) in response to the Ma10 than CAT homologous challenge. Moreover, the administration of paraquat, an ROS-promoting agent, favoured survival of the host upon exposure to each fungal strain. We propose that some pathogens likely overcome pro-oxidant-mediated immune priming defences by producing antioxidants such as catalase.


Assuntos
Antioxidantes/metabolismo , Catalase/metabolismo , Evasão da Resposta Imune , Fatores Imunológicos/metabolismo , Metarhizium/enzimologia , Metarhizium/imunologia , Tenebrio/imunologia , Animais , Análise de Sobrevida
7.
Microb Pathog ; 118: 361-364, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29614365

RESUMO

Immune priming in invertebrates refers to an improved immune response (and therefore a better chance of survival) upon a second encounter with a specific pathogen. Although the existence of immune priming has been evaluated in invertebrate hosts, the ability of a particular entomopathogen species or strain to influence the occurrence of immune priming has not been thoroughly evaluated. The aim of the current study was to compare the occurrence of immune priming in Tenebrio molitor larvae after homologous challenges (a dual exposure to similar entomopathogens) with Serratia marcescens, Bacillus thuringiensis and Metarhizium anisopliae. Larvae presented more effective immune priming (measured as survival rates) when exposed to M. anisopliae or B. thuringiensis than when exposed to S. marcescens. We hypothesize that the toll pathway may help T. molitor survive these enemies and that the IMD pathway may be expressed to a lesser degree in this species, which may explain why they succumb to Gram-negative bacteria. This and other recent evidence suggest that the occurrence of immune priming in these organisms must not be ruled out until this phenomenon is tested with different entomopathogens.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Larva/imunologia , Tenebrio/imunologia , Animais , Bacillus thuringiensis/patogenicidade , Larva/microbiologia , Metarhizium/patogenicidade , Serratia marcescens/patogenicidade , Especificidade da Espécie , Análise de Sobrevida , Tenebrio/microbiologia
8.
J Ind Microbiol Biotechnol ; 44(1): 63-74, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27853904

RESUMO

Fermentative processes are widely used to produce food, beverages and biofuels. Saccharomyces cerevisiae is an efficient ethanol-producing microorganism. However, a concentration of high ethanol and other metabolites can affect yeast viability and decrease the ethanol yield. Many studies have focused on improving the fermentative efficiency, mostly through the genetic engineering of genes that have a direct impact on specific metabolic pathways. In the present study, we characterized a small open reading frame encoding a protein with an unknown function and biological role termed YNR034W-A. We analyzed the expression profile of the YNR034W-A gene during growth and glucose treatment, finding that it is expressed during the diauxic shift and stationary phase and is negatively regulated by glucose. We overexpressed the YNR034W-A gene in the BY4741 laboratory strain and a wild-type yeast strain (AR5) isolated during the Tequila fermentation process. Transformant derivatives of the AR5 strain showed an improved fermentative efficiency during fermentation of Agave tequilana Weber juice. We suggest that the improved fermentative efficiency is the result of a higher stress tolerance response in the YNR034W-A overexpressing transformant.


Assuntos
Agave , Fermentação , Fases de Leitura Aberta , Saccharomyces cerevisiae/genética , Bebidas Alcoólicas/análise , Etanol/metabolismo , Perfilação da Expressão Gênica , Engenharia Genética , Glucose/química , Microbiologia Industrial , Saccharomyces cerevisiae/metabolismo
9.
Fungal Genet Biol ; 48(9): 886-95, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21704720

RESUMO

An alcohol dehydrogenase gene, adh1, has been identified in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that adh1 is highly expressed in mycelia grown in potato dextrose liquid medium (PDB) under hypoxic conditions, as compared to mycelia grown under aerobic conditions. One spontaneous allyl alcohol-resistant (Ally(R)) mutant exhibited insertion of an incomplete F.oxysporum transposable element, while another mutant contained a short (13 nucleotide) deletion, in both cases interrupting the coding region of the adh1 gene. These mutations caused deficiency in Adh activity due to loss of the main constitutive isoform of Adh1, as well as alteration of different physiological parameters related to carbon and energy metabolism, including the ability to use ethanol as a carbon source under aerobic conditions; impaired growth under hypoxic conditions with glucose as the carbon source; and diminished production of ethanol in glucose-containing medium. Interestingly, the adh1 mutations resulted in a significant delay in fungal disease development in tomato plants. Complementation with the wild-type adh1 allele repaired all defects caused by mutation, indicating that the product of the adh1 gene has dual enzymatic functions (fermentative and oxidative), depending on culture conditions, and is also required for full fungal virulence.


Assuntos
Álcool Desidrogenase/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidade , Estresse Oxidativo , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Álcool Desidrogenase/genética , Fermentação , Proteínas Fúngicas/genética , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Mutação , Virulência
10.
Microbiol Res ; 166(6): 494-507, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21236653

RESUMO

The gene ODC1, which codes for the ornithine decarboxylase enzyme, was isolated from the entomopathogenic fungus, Metarhizium anisopliae. The deduced amino acid sequence predicted a protein of 447 amino acids with a molecular weight of 49.3 kDa that contained the canonical motifs of ornithine decarboxylases. The ODC1 cDNA sequence was expressed in Escherichia coli cells; radiometric enzyme assays showed that the purified recombinant protein had ornithine decarboxylase activity. The optimum pH of the purified Odc1 protein was 8.0-8.5, and the optimum reaction temperature was 37°C. The apparent K(m) for ornithine at a pyridoxal phosphate concentration of 20mM was 22 µM. The competitive inhibitor of ODC activity, 1,4-diamino-2-butanone (DAB), at 0.25 mM inhibited 95% of ODC activity. The ODC1 mRNA showed an increase at the beginning of appressorium formation in vitro. During the M. anisopliae invasion process into Plutella xylostella larvae, the ODC1 mRNA showed a discrete increase within the germinating spore and during appressorium formation. The second expression peak was higher and prolonged during the invasion and death of the insect. The ODC1 gene complements the polyamine auxotrophy of Yarrowia lipolytica odc null mutant.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Expressão Gênica , Metarhizium/enzimologia , Mariposas/microbiologia , Ornitina Descarboxilase/química , Ornitina Descarboxilase/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cinética , Metarhizium/química , Metarhizium/genética , Dados de Sequência Molecular , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA