Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2941, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618707

RESUMO

The Aptian was characterized by dramatic tectonic, oceanographic, climatic and biotic changes and its record is punctuated by Oceanic Anoxic Events (OAEs). The timing and duration of these events are still contentious, particularly the age of the Barremian-Aptian boundary. This study presents a cyclostratigraphic evaluation of a high-resolution multiproxy dataset (δ13C, δ18O, MS and ARM) from the Poggio le Guaine core. The identification of Milankovitch-band imprints allowed us to construct a 405-kyr astronomically-tuned age model that provides new constraints for the Aptian climato-chronostratigraphic framework. Based on the astronomical tuning, we propose: (i) a timespan of ~7.2 Myr for the Aptian; (ii) a timespan of ~420 kyr for the magnetic polarity Chron M0r and an age of ~120.2 Ma for the Barremian-Aptian boundary; and (iii) new age constraints on the onset and duration of Aptian OAEs and the 'cold snap'. The new framework significantly impacts the Early Cretaceous geological timescale.

2.
Sci Rep ; 10(1): 8163, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424216

RESUMO

Precambrian cellular remains frequently have simple morphologies, micrometric dimensions and are poorly preserved, imposing severe analytical and interpretational challenges, especially for irrefutable attestations of biogenicity. The 1.88 Ga Gunflint biota is a Precambrian microfossil assemblage with different types and qualities of preservation across its numerous geological localities and provides important insights into the Proterozoic biosphere and taphonomic processes. Here we use synchrotron-based ptychographic X-ray computed tomography to investigate well-preserved carbonaceous microfossils from the Schreiber Beach locality as well as poorly-preserved, iron-replaced fossil filaments from the Mink Mountain locality, Gunflint Formation. 3D nanoscale imaging with contrast based on electron density allowed us to assess the morphology and carbonaceous composition of different specimens and identify the minerals associated with their preservation based on retrieved mass densities. In the Mink Mountain filaments, the identification of mature kerogen and maghemite rather than the ubiquitously described hematite indicates an influence from biogenic organics on the local maturation of iron oxides through diagenesis. This non-destructive 3D approach to microfossil composition at the nanoscale within their geological context represents a powerful approach to assess the taphonomy and biogenicity of challenging or poorly preserved traces of early microbial life, and may be applied effectively to extraterrestrial samples returned from upcoming space missions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA