Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 223: 160-171, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059511

RESUMO

This study explores the physiological changes associated with aging that lead to frailty syndrome, characterized by reduced vitality and degeneration across multiple bodily systems, increasing susceptibility to various pathologies. While established scales like the Fried Phenotype and Frailty Trait Scale (FTS) are commonly used for assessing frailty, incorporating biomarkers is crucial for accurate diagnosis and prognosis. Our research examines plasma oxylipin levels in frail elderly individuals to identify novel biomarkers. Diagnostic criteria for frailty included assessments using the Fried Phenotype and FTS-5, with blood samples collected from 71 elderly participants (50 women and 21 men) with mean ages of 73.6 ± 5.9 and 76.2 ± 6.2 years, respectively. Women exhibited elevated platelet counts (p-value 0.0035). The significant differences in oxylipin concentrations associated with the Fried Phenotype were particularly noteworthy, predominantly observed in women. Specifically, in women, decreased grip strength (<15 kg) and slow gait speed (<0.8 m/s) correlated with increased levels of thromboxane B2 (TxB2) and 7-HDoHE (p-values 0.0404, 0.0300, 0.0033, and 0.0033, respectively). Additionally, elevated 7-HDoHE levels correlated with a BMI exceeding 28 kg/m2 (p-value 0.0123) and Physical Activity Scale for the Elderly (PASE) scores surpassing 5 points (p-value 0.0134) in women. In summary, our findings emphasize that frail older individuals, particularly women, exhibit higher levels of TxB2 and 7-HDoHE compared to their non-frail counterparts, aligning with established frailty classification and scale parameters, suggesting their potential as indicative biomarkers.


Assuntos
Envelhecimento , Biomarcadores , Idoso Fragilizado , Fragilidade , Humanos , Feminino , Idoso , Biomarcadores/sangue , Fragilidade/sangue , Fragilidade/diagnóstico , Fragilidade/fisiopatologia , Masculino , Idoso de 80 Anos ou mais , Força da Mão , Tromboxano B2/sangue , Avaliação Geriátrica/métodos
2.
Redox Biol ; 72: 103142, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581860

RESUMO

Platelets are the critical target for preventing and treating pathological thrombus formation. However, despite current antiplatelet therapy, cardiovascular mortality remains high, and cardiovascular events continue in prescribed patients. In this study, first results were obtained with ortho-carbonyl hydroquinones as antiplatelet agents; we found that linking triphenylphosphonium cation to a bicyclic ortho-carbonyl hydroquinone moiety by a short alkyl chain significantly improved their antiplatelet effect by affecting the mitochondrial functioning. The mechanism of action involves uncoupling OXPHOS, which leads to an increase in mitochondrial ROS production and a decrease in the mitochondrial membrane potential and OCR. This alteration disrupts the energy production by mitochondrial function necessary for the platelet activation process. These effects are responsive to the complete structure of the compounds and not to isolated parts of the compounds tested. The results obtained in this research can be used as the basis for developing new antiplatelet agents that target mitochondria.


Assuntos
Plaquetas , Hidroquinonas , Potencial da Membrana Mitocondrial , Compostos Organofosforados , Inibidores da Agregação Plaquetária , Humanos , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Hidroquinonas/farmacologia , Hidroquinonas/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Compostos Organofosforados/química , Fosforilação Oxidativa/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/química , Espécies Reativas de Oxigênio/metabolismo
4.
Front Immunol ; 14: 1178909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593740

RESUMO

Introduction: Brain death (BD) and steatosis are both risk factors for organ dysfunction or failure in liver transplantation (LT). Material and methods: Here, we examine the role of interleukin 6 (IL- 6) and IL-10 in LT of both non-steatotic and steatotic liver recovered from donors after brain death (DBDs), as well as the molecular signaling pathways underlying the effects of such cytokines. Results: BD reduced IL-6 levels only in nonsteatotic grafts, and diminished IL-10 levels only in steatotic ones. In both graft types, BD increased IL-1ß, which was associated with hepatic inflammation and damage. IL-6 administration reduced IL-1ß only in non-steatotic grafts and protected them against damage and inflammation. Concordantly, IL-1ß inhibition via treatment with an IL-1 receptor antagonist caused the same benefits in non-steatotic grafts. Treatment with IL-10 decreased IL-1ß only in steatotic grafts and reduced injury and inflammation specifically in this graft type. Blockading the IL-1ß effects also reduced damage and inflammation in steatotic grafts. Also, blockade of IL-1ß action diminished hepatic cAMP in both types of livers, and this was associated with a reduction in liver injury and inflammation, then pointing to IL-1ß regulating cAMP generation under LT and BD conditions. Additionally, the involvement of nitric oxide (NO) in the effects of interleukins was evaluated. Pharmacological inhibition of NO in LT from DBDs prompted even more evident reductions of IL-6 or IL-10 in non-steatotic and steatotic grafts, respectively. This exacerbated the already high levels of IL-1ß seen in LT from DBDs, causing worse damage and inflammation in both graft types. The administration of NO donors to non-steatotic grafts potentiated the beneficial effects of endogenous NO, since it increased IL-6 levels, and reduced IL-1ß, inflammation, and damage. However, treatment with NO donors in steatotic grafts did not modify IL-10 or IL-1ß levels, but induced more injurious effects tan the induction of BD alone, characterized by increased nitrotyrosine, lipid peroxidation, inflammation, and hepatic damage. Conclusion: Our study thus highlights the specificity of new signaling pathways in LT from DBDs: NO-IL-6-IL-1ß in non-steatotic livers and NO-IL-10-IL-1ß in steatotic ones. This opens up new therapeutic targets that could be useful in clinical LT.


Assuntos
Fígado Gorduroso , Óxido Nítrico , Animais , Ratos , Encéfalo , Morte Encefálica , Inflamação , Interleucina-6 , Doadores de Óxido Nítrico
5.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37259359

RESUMO

Although platelets are anucleated cells, they have fully functional mitochondria, and currently, it is known that several processes that occur in the platelet require the action of mitochondria. There are plenty of mitochondrial-targeted compounds described in the literature related to cancer, however, only a small number of studies have approached their interaction with platelet mitochondria and/or their effects on platelet activity. Recent studies have shown that magnolia extract and mitochondria-targeted magnolol can inhibit mitochondrial respiration and cell proliferation in melanoma and oral cancer cells, respectively, and they can also induce ROS and mitophagy. In this study, the effect of triphenylphosphonium cation, linked by alkyl chains of different lengths, to the organic compound magnolol on human-washed platelets was evaluated. We demonstrated that the addition of triphenylphosphonium by a four-carbon linker to magnolol (MGN4) considerably enhanced the Magnolol antiplatelet effect by a 3-fold decrease in the IC50. Additionally, platelets exposed to MGN4 5 µM showed several differences from the control including increased basal respiration, collagen-induced respiration, ATP-independent respiration, and reduced ATP-dependent respiration and non-mitochondrial respiration.

6.
Biomolecules ; 13(5)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37238717

RESUMO

Oxidative stress participates at the baseline of different non-communicable pathologies such as cardiovascular diseases. Excessive formation of reactive oxygen species (ROS), above the signaling levels necessary for the correct function of organelles and cells, may contribute to the non-desired effects of oxidative stress. Platelets play a relevant role in arterial thrombosis, by aggregation triggered by different agonists, where excessive ROS formation induces mitochondrial dysfunction and stimulate platelet activation and aggregation. Platelet is both a source and a target of ROS, thus we aim to analyze both the platelet enzymes responsible for ROS generation and their involvement in intracellular signal transduction pathways. Among the proteins involved in these processes are Protein Disulphide Isomerase (PDI) and NADPH oxidase (NOX) isoforms. By using bioinformatic tools and information from available databases, a complete bioinformatic analysis of the role and interactions of PDI and NOX in platelets, as well as the signal transduction pathways involved in their effects was performed. We focused the study on analyzing whether these proteins collaborate to control platelet function. The data presented in the current manuscript support the role that PDI and NOX play on activation pathways necessary for platelet activation and aggregation, as well as on the platelet signaling imbalance produced by ROS production. Our data could be used to design specific enzyme inhibitors or a dual inhibition for these enzymes with an antiplatelet effect to design promising treatments for diseases involving platelet dysfunction.


Assuntos
NADPH Oxidases , Isomerases de Dissulfetos de Proteínas , Humanos , NADPH Oxidases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Amigos , Transdução de Sinais , Oxirredução
7.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234679

RESUMO

Some fruits and vegetables, rich in bioactive compounds such as polyphenols, flavonoids, and anthocyanins, may inhibit platelet activation pathways and therefore reduce the risk of suffering from CVD when consumed regularly. Aristotelia chilensis Stuntz (Maqui) is a shrub or tree native to Chile with outstanding antioxidant activity, associated with its high content in anthocyanins, polyphenols, and flavonoids. Previous studies reveal different pharmacological properties for this berry, but its cardioprotective potential has been little studied. Despite having an abundant composition, and being rich in bioactive products with an antiplatelet role, there are few studies linking this berry with antiplatelet activity. This review summarizes and discusses relevant information on the cardioprotective potential of Maqui, based on its composition of bioactive compounds, mainly as a nutraceutical antiplatelet agent. Articles published between 2000 and 2022 in the following bibliographic databases were selected: PubMed, ScienceDirect, and Google Scholar. Our search revealed that Maqui is a promising cardiovascular target since extracts from this berry have direct effects on the reduction in cardiovascular risk factors (glucose index, obesity, diabetes, among others). Although studies on antiplatelet activity in this fruit are recent, its rich chemical composition clearly shows that the presence of chemical compounds (anthocyanins, flavonoids, phenolic acids, among others) with high antiplatelet potential can provide this berry with antiplatelet properties. These bioactive compounds have antiplatelet effects with multiple targets in the platelet, particularly, they have been related to the inhibition of thromboxane, thrombin, ADP, and GPVI receptors, or through the pathways by which these receptors stimulate platelet aggregation. Detailed studies are needed to clarify this gap in the literature, as well as to specifically evaluate the mechanism of action of Maqui extracts, due to the presence of phenolic compounds.


Assuntos
Elaeocarpaceae , Frutas , Difosfato de Adenosina/metabolismo , Antocianinas/análise , Antioxidantes/análise , Elaeocarpaceae/química , Flavonoides/análise , Frutas/química , Glucose/metabolismo , Extratos Vegetais/química , Inibidores da Agregação Plaquetária/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Polifenóis/análise , Trombina/metabolismo , Tromboxanos/análise , Tromboxanos/metabolismo
8.
Antioxidants (Basel) ; 11(5)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35624690

RESUMO

Erythroid-related nuclear factor 2 (NRF2) and the antioxidant-responsive-elements (ARE) signaling pathway are the master regulators of cell antioxidant defenses, playing a key role in maintaining cellular homeostasis, a scenario in which proper mitochondrial function is essential. Increasing evidence indicates that the regular practice of physical exercise increases cellular antioxidant defenses by activating NRF2 signaling. This manuscript reviewed classic and ongoing research on the beneficial effects of exercise on the antioxidant system in both the brain and skeletal muscle.

9.
Biomedicines ; 10(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35327476

RESUMO

Oxylipins play a critical role in regulating the onset and resolution phase of inflammation. Despite inflammation is a pathological hallmark in amyotrophic lateral sclerosis (ALS), the plasma oxylipin profile of ALS patients has not been assessed yet. Herein, we develop an oxylipin profile-targeted analysis of plasma from 74 ALS patients and controls. We found a significant decrease in linoleic acid-derived oxylipins in ALS patients, including 9-hydroxy-octadecadienoic acid (9-HODE) and 13-HODE. These derivatives have been reported as important regulators of inflammation on different cell systems. In addition, some 5-lipoxygenase metabolites, such as 5-hydroxy- eicosatetraenoic acid also showed a significant decrease in ALS plasma samples. Isoprostanes of the F2α family were detected only in ALS patients but not in control samples, while the hydroxylated metabolite 11-HETE significantly decreased. Despite our effort to analyze specialized pro-resolving mediators, they were not detected in plasma samples. However, we found the levels of 14-hydroxy-docosahexaenoic acid, a marker pathway of the Maresin biosynthesis, were also reduced in ALS patients, suggesting a defective activation in the resolution programs of inflammation in ALS. We further analyze oxylipin concentration levels in plasma from ALS patients to detect correlations between these metabolites and some clinical parameters. Interestingly, we found that plasmatic levels of 13-HODE and 9-HODE positively correlate with disease duration, expressed as days since onset. In summary, we developed a method to analyze "(oxy)lipidomics" in ALS human plasma and found new profiles of metabolites and novel lipid derivatives with unknown biological activities as potential footprints of disease onset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA