Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119458, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33601223

RESUMO

Monitoring of poly-3-hydroxybutyrate accumulation and changes in its relative contents in biomass of the plant-growth-promoting bacteria Azospirillum brasilense (strains Sp7, Cd and Sp245) was performed during aerobic cultivation for 1 to 8 days at various initial concentrations of bound nitrogen (0.1 to 0.5 g∙L-1 NH4Cl) in the culture medium using in-situ transmission FTIR spectroscopy. A methodology has been proposed based on calculating band areas in FTIR spectra (instead of band intensities commonly used earlier) for determining relative contents of PHB in dry bacterial biomass, using the ester ν(C=O) band as a PHB marker (in the region 1750-1720 cm-1) and amide II band of cellular proteins (at ca. 1540 cm-1). Differences in PHB accumulation levels and their changes in the course of cultivation under various trophic stress for the three strains are discussed in relation to their different ecological niches which they occupy in the rhizosphere.


Assuntos
Azospirillum brasilense , Nitrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Hidroxibutiratos , Nitrogênio/metabolismo , Poliésteres
2.
N Biotechnol ; 58: 17-24, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32184193

RESUMO

Microbial reduction of selenium oxyanions has attracted attention in recent years. In this study, an original and simple method for the synthesis of extracellular selenium nanoparticles (Se NPs) of relatively uniform size has been developed using strains Sp7 and Sp245 of the ubiquitous plant-growth promoting rhizobacterium Azospirillum brasilense, both capable of selenite (SeO32-) reduction. In addition, a reliable purification protocol for the recovery of the Se NPs has been perfected, which could be applied with minor modifications to cultures of other microbial species. Importantly, it was found that, by changing the conditions of bacterial reduction of selenite, extracellularly localised Se NPs can be obtained using bacteria which would otherwise produce intracellular Se NPs. In particular, bacterial cultures grown up to the end of the logarithmic growth phase, washed free of culture medium and then incubated with selenite, were used to obtain extracellular Se NPs. Their sizes depended on the initial selenite concentration (∼25-80 nm in diameter at 50-10 mM selenite, respectively). The Se NPs obtained were characterised by transmission electron microscopy (TEM), dynamic light scattering, as well as Raman and UV-vis spectroscopies. Their zeta potential was found to be negative (ca. minus 21-24 mV). Bacterial selenite reduction was also studied in the presence of the efflux pump inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP). In this case, TEM indicated the formation only of intracellular selenium crystallites. The data show that the formation of extracellular Se NPs requires normal bacterial metabolic activity, while CCCP evidently blocks the membrane export of Se0 nuclei.


Assuntos
Azospirillum brasilense/metabolismo , Nanopartículas/metabolismo , Ácido Selenioso/metabolismo , Selênio/metabolismo , Azospirillum brasilense/citologia , Nanopartículas/química , Oxirredução , Ácido Selenioso/química , Selênio/química
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117970, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887674

RESUMO

Microbial cells are well known to be capable of remaining viable when desiccated, and a variety of beneficial microorganisms can thus be preserved for storage. For the ubiquitous widely studied soil bacterium Azospirillum brasilense (wild-type strain Sp7), which has a significant agrobiotechnological potential owing to its plant-growth-promoting capabilities perspective for its use in biofertilisers, Fourier transform infrared (FTIR) spectroscopy (in the diffuse reflectance mode, DRIFT) was used to control the state of biomass, together with 57Fe transmission Mössbauer spectroscopy to monitor intracellular iron speciation in live rapidly frozen cell suspension and in the lyophilised biomass (both measured at T = 80 K). It has been shown for the first time that a relatively large part of ferrous iron in live cells (22% of the whole cellular iron pool, represented by two high-spin Fe(II) forms, in the 18-h culture grown on 57Fe(III) complex with nitrilotriacetic acid as the sole source of iron) gets largely oxidised upon lyophilisation. The remaining part of iron(II) in the resulting dry biomass was found to be ca. 3% only. The major part of ferric iron in the dry biomass was shown to be comprised of ferritin-like ferric species (giving a typical magnetically split sextet at T = 5 K), while the iron(III) formed from cellular iron(II) by oxidation in air in the course of drying remained in a paramagnetic state even at T = 5 K. The possibility of intracellular iron(II) oxidation to iron(III) upon desiccation may be a specific natural strategy to avoid cell damage caused by Fenton-type reactions in dormant (frozen, dried) cells. The results obtained may have important implications related to iron speciation and redox transformations in dried bacterial preparations intended for long-term storage.


Assuntos
Azospirillum brasilense/metabolismo , Biomassa , Liofilização , Espaço Intracelular/metabolismo , Ferro/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Mossbauer , Oxirredução
4.
Anal Bioanal Chem ; 408(6): 1565-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26769130

RESUMO

For the ubiquitous diazotrophic rhizobacterium Azospirillum brasilense, which has been attracting the attention of researchers worldwide for the last 35 years owing to its significant agrobiotechnological and phytostimulating potential, the data on iron acquisition and its chemical speciation in cells are scarce. In this work, for the first time for azospirilla, low-temperature (at 80 K, 5 K, as well as at 2 K without and with an external magnetic field of 5 T) transmission Mössbauer spectroscopic studies were performed for lyophilised biomass of A. brasilense (wild-type strain Sp7 grown with (57)Fe(III) nitrilotriacetate complex as the sole source of iron) to enable quantitative chemical speciation analysis of the intracellular iron. In the Mössbauer spectrum at 80 K, a broadened quadrupole doublet of high-spin iron(III) was observed with a few percent of a high-spin iron(II) contribution. In the spectrum measured at 5 K, a dominant magnetically split component appeared with the parameters typical of ferritin species from other bacteria, together with a quadrupole doublet of a superparamagnetic iron(III) component and a similarly small contribution from the high-spin iron(II) component. The Mössbauer spectra recorded at 2 K (with or without a 5 T external field) confirmed the assignment of ferritin species. About 20% of total Fe in the dry cells of A. brasilense strain Sp7 were present in iron(III) forms superparamagnetic at both 5 and 2 K, i.e. either different from ferritin cores or as ferritin components with very small particle sizes.


Assuntos
Azospirillum brasilense/metabolismo , Ferritinas/metabolismo , Ferro/metabolismo , Espectroscopia de Mossbauer/métodos , Azospirillum brasilense/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ferritinas/química , Liofilização , Ferro/química , Fenômenos Magnéticos , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Microb Ecol ; 68(3): 495-503, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24863127

RESUMO

The ability to reduce selenite (SeO(3)(2-)) ions with the formation of selenium nanoparticles was demonstrated in Azospirillum brasilense for the first time. The influence of selenite ions on the growth of A. brasilense Sp7 and Sp245, two widely studied wild-type strains, was investigated. Growth of cultures on both liquid and solid (2 % agar) media in the presence of SeO(3)(2-) was found to be accompanied by the appearance of the typical red colouration. By means of transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS) and X-ray fluorescence analysis (XFA), intracellular accumulation of elementary selenium in the form of nanoparticles (50 to 400 nm in diameter) was demonstrated for both strains. The proposed mechanism of selenite-to-selenium (0) reduction could involve SeO(3)(2-) in the denitrification process, which has been well studied in azospirilla, rather than a selenite detoxification strategy. The results obtained point to the possibility of using Azospirillum strains as endophytic or rhizospheric bacteria to assist phytoremediation of, and cereal cultivation on, selenium-contaminated soils. The ability of A. brasilense to synthesise selenium nanoparticles may be of interest to nanobiotechnology for "green synthesis" of bioavailable amorphous red selenium nanostructures.


Assuntos
Azospirillum brasilense/metabolismo , Nanopartículas/química , Ácido Selenioso/química , Cor , Meios de Cultura , Oxirredução , Selênio/química
6.
Microb Ecol ; 67(1): 155-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24276540

RESUMO

For the soil nitrogen-fixing bacterium Azospirillum brasilense, the ability to reduce [AuCl4](-) and to form gold nanoparticles (GNPs) has been demonstrated, with the appearance of a mauve tint of the culture. To validate the shapes and chemical nature of nanoparticles, transmission electron microscopy (TEM) and X-ray fluorescence analysis were used. For the widely studied agriculturally important wild-type strains A. brasilense Sp7 and Sp245, GNPs formed after 10 days of incubation of cell biomass with 0.25 mM [AuCl4](-) were shown (using TEM) to be mainly of spherical form (5 to 20 nm in diameter), with rare occasional triangles. In the course of cultivation with [AuCl4](-), after 5 days, a mauve tint was already visible for cells of strain Sp245.5, after 6 days for Sp245 and after 10 days for Sp7. Thus, for the mutant strain Sp245.5 (which has significant differences in the structure and composition of cell-surface polysaccharides as compared with Sp245), a more rapid formation of GNPs was observed. Moreover, their TEM images (also obtained after 10 days) showed different shapes: nano-sized spheres, triangles, hexagons and rods, as well as larger round-shaped flower-like nanoparticles about 100 nm in size. Since by the time of GNP formation in our experiments the cells were found to be already not viable, this confirms the dominating role of cell surface structure and chemical composition in shaping the GNPs formed in the course of [AuCl4](-) reduction to Au(0). This finding may be useful for understanding the natural biogeochemical mechanisms of gold reduction and formation of GNPs involving microorganisms. The data obtained may also help in developing protocols for environmentally friendly synthesis of nanoparticles and possible use of bacterial cells with modified surface structure and composition for their fabrication.


Assuntos
Azospirillum brasilense/metabolismo , Ouro/metabolismo , Nanopartículas , Microscopia Eletrônica de Transmissão , Polissacarídeos Bacterianos/química , Espectrometria por Raios X
7.
Microbiol Res ; 164(2): 149-56, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-17317126

RESUMO

The plant-beneficial bacterium Azospirillum brasilense can swim in liquids and swarm or migrate with the formation of microcolonies in soft media. To get closer to understanding the influence of natural environments on A. brasilense motility, we studied the individual and social movement of the bacterium in the presence of various plant lectins. The lectins with specificity for N-acetyl-beta-d-glucosamine oligomers (wheat germ, Solanum tuberosum and Ulex europeus agglutinins) decreased A. brasilense swimming speed and induced the formation of branched-granular colonies instead of the swarming rings. These effects seemed to be a consequence of specific interactions between the agglutinins and the lectin-binding polymers present in the A. brasilense cell envelope. Concanavalin A (with an affinity for terminal alpha-d-mannosyl and alpha-d-glucosyl residues) and Phaseolus vulgaris phytohemagglutinin P (with unknown specificity) almost did not affect the motility of A. brasilense.


Assuntos
Azospirillum brasilense/fisiologia , Quimiotaxia/efeitos dos fármacos , Lectinas de Plantas/farmacologia , Azospirillum brasilense/efeitos dos fármacos
8.
J Trace Elem Med Biol ; 19(1): 91-5, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16240678

RESUMO

The plant-associated nitrogen-fixing rhizobacterium Azospirillum brasilense attracts world-wide attention owing to its plant growth-promoting activities. Among hundreds of its strains known up to date, wild-type strain Sp245 has been proved to be capable of colonising both the plant-root interior and exterior (i.e. a facultative endophyte), whereas others are non-endophytes colonising the root surface only. Thus, the different ecological niches occupied by these strains in the rhizosphere suggest that their responses to environmental conditions might differ as well. In this study, responses of A. brasilense strains Sp245 and Sp7 to several heavy metals (Co2+, Cu2+, Zn2+), present in the medium at tolerable concentrations (up to 0.2 mmol/l) and taken up by the bacteria, were compared. Fourier transform infrared (FTIR) spectroscopy was used for controlling the compositional features of whole cells. The results obtained show that in strain Sp7 (non-endophyte) the heavy metals induced an enhanced accumulation of polyester compounds (poly-3-hydroxybutyrate; PHB). In contrast, the response of the endophytic strain Sp245 to heavy metal uptake was found to be much less pronounced. These dissimilarities in their behaviour may be caused by different adaptation abilities of these strains to stress conditions owing to their different ecological status. It was also found that adding 0.2 mmol/l Cu2+ or Cd2+ in the culture medium resulted in noticeably reducing the levels of indole-3-acetic acid (IAA, auxin) produced by both the strains of the bacterium. This can directly affect the efficiency of associative plant-bacterial symbioses involving A. brasilense in heavy-metal-contaminated soil.


Assuntos
Azospirillum brasilense/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Azospirillum brasilense/química , Ácidos Indolacéticos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA