Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 192: 106706, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763316

RESUMO

Mannheimiahaemolytica is an opportunistic agent of the respiratory tract of bovines, a member of the Pasteurellaceae family, and the causal agent of fibrinous pleuropneumonia. This bacterium possesses different virulence factors, allowing it to colonize and infect its host. The present work describes the isolation and characterization of a serine protease secreted by M. haemolytica serotype 1. This protease was isolated from M. haemolytica cultured media by precipitation with 50 % methanol and ion exchange chromatography on DEAE-cellulose. It is a 70-kDa protease able to degrade sheep and bovine fibrinogen or porcine gelatin but not bovine IgG, hemoglobin, or casein. Mass spectrometric analysis indicates its identity with protease IV of M. haemolytica. The proteolytic activity was active between pH 5 and 9, with an optimal pH of 8. It was stable at 50 °C for 10 min but inactivated at 60 °C. The sera of bovines with chronic or acute pneumonia recognized this protease. Still, it showed no cross-reactivity with rabbit hyperimmune serum against the secreted metalloprotease from Actinobacilluspleuropneumoniae, another member of the Pasteurellaceae family. M. haemolytica secreted proteases could contribute to the pathogenesis of this bacterium through fibrinogen degradation, a characteristic of this fibrinous pleuropneumonia.


Assuntos
Fibrinogênio , Mannheimia haemolytica , Serina Proteases , Animais , Mannheimia haemolytica/enzimologia , Ovinos , Bovinos , Fibrinogênio/metabolismo , Concentração de Íons de Hidrogênio , Serina Proteases/metabolismo , Serina Proteases/isolamento & purificação , Temperatura , Proteólise , Peso Molecular , Gelatina/metabolismo , Estabilidade Enzimática , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/isolamento & purificação , Espectrometria de Massas , Cromatografia por Troca Iônica , Suínos , Fatores de Virulência/metabolismo , Fatores de Virulência/isolamento & purificação
2.
J Fungi (Basel) ; 9(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37755003

RESUMO

We analyzed the global expression patterns of telomerase-negative mutants from haploid cells of Ustilago maydis to identify the gene network required for cell survival in the absence of telomerase. Mutations in either of the telomerase core subunits (trt1 and ter1) of the dimorphic fungus U. maydis cause deficiencies in teliospore formation. We report the global transcriptome analysis of two ter1Δ survivor strains of U. maydis, revealing the deregulation of telomerase-deleted responses (TDR) genes, such as DNA-damage response, stress response, cell cycle, subtelomeric, and proximal telomere genes. Other differentially expressed genes (DEGs) found in the ter1Δ survivor strains were related to pathogenic lifestyle factors, plant-pathogen crosstalk, iron uptake, meiosis, and melanin synthesis. The two ter1Δ survivors were phenotypically comparable, yet DEGs were identified when comparing these strains. Our findings suggest that teliospore formation in U. maydis is controlled by key pathogenic lifestyle and meiosis genes.

3.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37279906

RESUMO

Actinobacillus seminis is the causal agent of epididymitis and has other effects on the reproductive tracts of small ruminants and bovines. This bacterium causes infection when luteinizing (LH) or follicle-stimulating hormones increase, and hosts reach sexual maturity. LH induces female ovulation and male testosterone production, suggesting that these hormones affect A. seminis pathogenicity. In the present study, we evaluated the effect of testosterone (1-5 ng/ml) or estradiol (5-25 pg/ml) added to culture medium on the in vitro growth, biofilm production, and adhesin expression of A. seminis. Estradiol does not promote the growth of this bacterium, whereas testosterone increased A. seminis planktonic growth 2-fold. Both hormones induced the expression of the elongation factor thermo unstable (EF-Tu) and phosphoglycerate mutase (PGM), proteins that A. seminis uses as adhesins. Estradiol (5 or 10 pg/ml) decreased biofilm formation by 32%, whereas testosterone, even at 5 ng/ml, showed no effect. Both hormones modified the concentrations of carbohydrates and eDNA in biofilms by 50%. Amyloid proteins are characterized by their capacity to bind Congo red (CR) dye. Actinobacillus seminis binds CR dye, and this binding increases in the presence of 5-20 pg/ml estradiol or 4 ng/ml testosterone. The A. seminis EF-Tu protein was identified as amyloid-like protein (ALP). The effect of sexual hormones on the growth and expression of virulence factors of A. seminis seems to be relevant for its colonization and permanence in the host.


Assuntos
Infecções por Actinobacillus , Actinobacillus seminis , Feminino , Masculino , Animais , Bovinos , Actinobacillus seminis/genética , Estradiol/farmacologia , Infecções por Actinobacillus/microbiologia , Testosterona/farmacologia , Fator Tu de Elongação de Peptídeos , Adesinas Bacterianas/genética , Biofilmes
4.
Front Microbiol ; 14: 1084766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778889

RESUMO

Introduction: Gallibacterium anatis causes gallibacteriosis in birds. These bacteria produce biofilms and secrete several fimbrial appendages as tools to cause disease in animals. G. anatis strains contain up to three types of fimbriae. Complete genome sequencing is the strategy currently used to determine variations in the gene content of G. anatis, although today only the completely circularized genome of G. anatis UMN179 is available. Methods: The appearance of growth of various strains of G. anatis in liquid culture medium was studied. Biofilm production and how the amount of biofilm was affected by DNase, Proteinase K, and Pronase E enzymes were analyzed. Fimbrial gene expression was performed by protein analysis and qRT-PCR. In an avian model, the pathogenesis generated by the strains G. anatis ESV200 and 12656-12 was investigated. Using bioinformatic tools, the complete genome of G. anatis ESV200 was comparatively studied to search for virulence factors that would help explain the pathogenic behavior of this strain. Results and Discussion: G. anatis ESV200 strain differs from the 12656-12 strain because it produces a biofilm at 20%. G. anatis ESV200 strain express fimbrial genes and produces biofilm but with a different structure than that observed for strain 12656-12. ESV200 and 12656-12 strains are pathogenic for chickens, although the latter is the most virulent. Here, we show that the complete genome of the ESV200 strain is similar to that of the UNM179 strain. However, these strains have evolved with many structural rearrangements; the most striking chromosomal arrangement is a Maverick-like element present in the ESV200 strain.

5.
Front Microbiol ; 13: 951173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051765

RESUMO

Pasteurellaceae family members obtain iron directly from host proteins or through siderophore-dependent mechanisms. Although Gallibacterum anatis expresses different virulence factors, its response to growth under iron restriction is unknown. G. anatis cultured in the presence of 2,2'-dipyridyl, up-expressed an approximately 65 kDa protein and repressed the expression of a 70 kDa protein. MALDI-TOF analysis of those proteins indicated homology with CirA (65 kDa), a protein involved in iron-siderophore acquisition in Mannheimia succinoproducens and a TonB-dependent receptor (70 kDa protein), a protein that binds chicken hemoglobin; however, G. anatis siderophore production was not detected by chromo azurol S (CAS)-BHI agar determination. This putative G. anatis siderophore receptor is under Fur control, but not the hemoglobin binding protein, as observed in G. anatis 12656-12 fur mutant (Ω fur 126.13) grown in the presence or not of 2,2'-dipyridyl. The addition of FeCl3 to the culture medium diminished the growth and biofilm production in approximately 30% and 35%, respectively, in the wild-type strain, but the growth of Ω fur 126.13 strain was not affected and biofilm production increased in 35%. G. anatis Ω fur 126.13 presented lower virulence when it was inoculated to 35-day-old chickens in comparison to the wild-type strain. The induction of more than one iron uptake mechanism could benefit pathogenic microorganisms such as Gallibacterium.

6.
Microb Pathog ; 172: 105788, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126788

RESUMO

Mannheimia haemolytica is the causal agent of the shipping fever in bovines and produces high economic losses worldwide. This bacterium possesses different virulence attributes to achieve a successful infection. One of the main virulence factors expressed by a pathogen is through adhesion molecules; however, the components participating in this process are not totally known. The present work identified a M. haemolytica 41 kDa outer membrane protein (Omp) that participates in bacterial adhesion. This protein showed 100% identity with the OmpH from M. haemolytica as determined by mass spectrometry and it interacts with sheep fibrinogen. The 41 kDa M. haemolytica OmpH interacts with bovine monocytes; a previous incubation of M. haemolytica with a rabbit hyperimmune serum against this Omp diminished 45% cell adhesion. The OmpH was recognized by serum from bovines affected by acute or chronic pneumonia, indicating its in vivo expression; moreover, it showed immune cross-reaction with the serum of rabbit infected with Pasteurella multocida. The OmpH is present in biofilms and previous incubation of M. haemolytca with rabbit serum against this protein diminished biofilm, indicating this protein's participation in biofilm formation. M. haemolytica OmpH is proposed as a relevant immunogen in bovine pneumonia protection.


Assuntos
Mannheimia haemolytica , Pasteurella multocida , Bovinos , Animais , Ovinos , Coelhos , Fibronectinas , Fibrinogênio , Biofilmes , Fatores de Virulência , Proteínas da Membrana Bacteriana Externa
7.
Antonie Van Leeuwenhoek ; 112(11): 1655-1662, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31230158

RESUMO

Actinobacillus seminis, a commensal of ovine and caprine reproductive organs, is able to induce epididymitis in the small ruminants that it infects. In this work, we characterised two protein bands of approximately 150 kDa and 65 kDa. These proteins cross-reacted with a polyclonal serum against Gallibacterium anatis hemagglutinin and with a polyclonal serum from sheep with epididymitis, indicating that the proteins are expressed in vivo; the two proteins also interacted with biotin-labeled sheep fibrinogen and fibronectin, suggesting that they may function as adhesins. The participation of these proteins as adhesins was confirmed by a cultured human bladder cell-A. seminis adhesion assay and adherence inhibition by preincubation of A. seminis with polyclonal antiserum to the 150 kDa protein. Both proteins presented sequence identity with an A. seminis GroEL protein by mass spectrometry analysis and agglutinated glutaraldehyde-fixed sheep red blood cells. Immunogold labeling was observed by transmission electron microscopy on bacterial cells that were negatively stained, and a peroxidase reaction was detected in A. seminis biofilms, when an anti-A. seminis 150 kDa protein serum was used, indicating the presence of this protein on the surface of A. seminis and in biofilms. The A. seminis GroEL-homologue is a multifunctional protein that likely acts as a hemagglutinin.


Assuntos
Actinobacillus seminis/fisiologia , Eritrócitos/imunologia , Proteínas de Choque Térmico/imunologia , Proteínas de Choque Térmico/metabolismo , Aglutinação , Testes de Aglutinação , Animais , Anticorpos Antibacterianos , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes , Adesão Celular , Eritrócitos/metabolismo , Proteínas de Choque Térmico/isolamento & purificação , Hemaglutinação , Hemaglutininas/metabolismo , Ovinos
8.
Genome Announc ; 6(3)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348341

RESUMO

The draft genome sequence of Escherichia coli strain SN137 is reported here. The genome comprises 172 contigs, corresponding to 4.9 Mb with 50% G+C content, and contains several genes related to pathogenicity that explain its survival in human hematic tissue.

9.
Genome Announc ; 6(2)2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29326222

RESUMO

The draft genome sequence of Actinobacillus seminis strain ATCC 15768 is reported here. The genome comprises 22 contigs corresponding to 2.36 Mb with 40.7% G+C content and contains several genes related to virulence, including a putative RTX protein.

10.
Genome Announc ; 5(15)2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28408672

RESUMO

The draft genome sequence of Avibacterium paragallinarum strain CL serovar C is reported here. The genome comprises 154 contigs corresponding to 2.4 Mb with 41% G+C content and many insertion sequence (IS) elements, a characteristic not previously reported in A. paragallinarum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA