Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 367(23)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33232444

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease. There are only two approved treatments, both of them unsuitable for the chronic phase, therefore the development of new drugs is a priority. Trypanosoma cruzi arginine kinase (TcAK) is a promising drug target since it is absent in humans and it is involved in cellular stress responses. In a previous study, possible TcAK inhibitors were identified through computer simulations resulting the best compounds capsaicin and cyanidin derivatives. Here, we evaluate the effect of capsaicin on TcAK activity and its trypanocidal effect. Although capsaicin produced a weak enzyme inhibition, it had a strong trypanocidal effect on epimastigotes and trypomastigotes (IC50 = 6.26 µM and 0.26 µM, respectively) being 20-fold more active on trypomastigotes than mammalian cells. Capsaicin was also active on the intracellular cycle reducing by half the burst of trypomastigotes at approximately 2 µM. Considering the difference between the concentrations at which parasite death and TcAK inhibition occur, other possible targets were predicted. Capsaicin is a selective trypanocidal agent active in nanomolar concentrations, with an IC50 57-fold lower than benznidazole, the drug currently used for treating Chagas disease.


Assuntos
Arginina Quinase/metabolismo , Capsaicina/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Ativação Enzimática/efeitos dos fármacos , Concentração Inibidora 50 , Nitroimidazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/enzimologia
2.
Mem Inst Oswaldo Cruz ; 115: e200019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32696913

RESUMO

BACKGROUND: NME23/NDPKs are well conserved proteins found in all living organisms. In addition to being nucleoside diphosphate kinases (NDPK), they are multifunctional enzymes involved in different processes such as DNA stability, gene regulation and DNA repair among others. TcNDPK1 is the canonical NDPK isoform present in Trypanosoma cruzi, which has nuclease activity and DNA-binding properties in vitro. OBJECTIVES: In the present study we explored the role of TcNDPK1 in DNA damage responses. METHODS: TcNDPK1 was expressed in mutant bacteria and yeasts and over-expressed in epimastigotes. Mutation frequencies, tolerance to genotoxic agents and activity of DNA repair enzymes were evaluated. FINDINGS: Bacteria decreased about 15-folds the spontaneous mutation rate and yeasts were more resistant to hydrogen peroxide and to UV radiation than controls. Parasites overexpressing TcNDPK1 were able to withstand genotoxic stresses caused by hydrogen peroxide, phleomycin and hidroxyurea. They also presented less genomic damage and augmented levels of poly(ADP)ribose and poly(ADP)ribose polymerase, an enzyme involved in DNA repair. MAIN CONCLUSION: These results strongly suggest a novel function for TcNDPK1; its involvement in the maintenance of parasite's genome integrity.


Assuntos
Dano ao DNA , Núcleosídeo-Difosfato Quinase/metabolismo , Trypanosoma cruzi/enzimologia , Reparo do DNA , Núcleosídeo-Difosfato Quinase/genética , Poli(ADP-Ribose) Polimerases , Trypanosoma cruzi/genética
3.
Mem. Inst. Oswaldo Cruz ; 115: e200019, 2020. tab, graf
Artigo em Inglês | LILACS, Sec. Est. Saúde SP | ID: biblio-1135223

RESUMO

BACKGROUND NME23/NDPKs are well conserved proteins found in all living organisms. In addition to being nucleoside diphosphate kinases (NDPK), they are multifunctional enzymes involved in different processes such as DNA stability, gene regulation and DNA repair among others. TcNDPK1 is the canonical NDPK isoform present in Trypanosoma cruzi, which has nuclease activity and DNA-binding properties in vitro. OBJECTIVES In the present study we explored the role of TcNDPK1 in DNA damage responses. METHODS TcNDPK1 was expressed in mutant bacteria and yeasts and over-expressed in epimastigotes. Mutation frequencies, tolerance to genotoxic agents and activity of DNA repair enzymes were evaluated. FINDINGS Bacteria decreased about 15-folds the spontaneous mutation rate and yeasts were more resistant to hydrogen peroxide and to UV radiation than controls. Parasites overexpressing TcNDPK1 were able to withstand genotoxic stresses caused by hydrogen peroxide, phleomycin and hidroxyurea. They also presented less genomic damage and augmented levels of poly(ADP)ribose and poly(ADP)ribose polymerase, an enzyme involved in DNA repair. MAIN CONCLUSION These results strongly suggest a novel function for TcNDPK1; its involvement in the maintenance of parasite's genome integrity.


Assuntos
Trypanosoma cruzi/enzimologia , Dano ao DNA , Núcleosídeo-Difosfato Quinase/metabolismo , Trypanosoma cruzi/genética , Poli(ADP-Ribose) Polimerases , Núcleosídeo-Difosfato Quinase/genética , Reparo do DNA
4.
Curr Med Chem ; 26(36): 6636-6651, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31218951

RESUMO

Amino acids and polyamines are involved in relevant processes for the parasite Trypanosoma cruzi, like protein synthesis, stress resistance, life cycle progression, infection establishment and redox balance, among others. In addition to the biosynthetic routes of amino acids, T. cruzi possesses transport systems that allow the active uptake from the extracellular medium; and in the case of polyamines, the uptake is the unique way to obtain these compounds. The TcAAAP protein family is absent in mammals and its members are responsible for amino acid and derivative uptake, thus the TcAAAP permeases are not only interesting and promising therapeutic targets but could also be used to direct the entry of toxic compounds into the parasite. Although there is a treatment available for Chagas disease, its limited efficacy in the chronic stage of the disease, as well as the side effects reported, highlight the urgent need to develop new therapies. Discovery of new drugs is a slow and cost-consuming process, and even during clinical trials the drugs can fail. In this context, drug repositioning is an interesting and recommended strategy by the World Health Organization since costs and time are significantly reduced. In this article, amino acids and polyamines transport and their potential as therapeutic targets will be revised, including examples of synthetic drugs and drug repurposing.


Assuntos
Sistemas de Transporte de Aminoácidos/antagonistas & inibidores , Proteínas de Transporte de Cátions/antagonistas & inibidores , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Reposicionamento de Medicamentos , Poliaminas/metabolismo
5.
PLoS Negl Trop Dis ; 11(3): e0005472, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306713

RESUMO

Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6-10.3 µM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 µM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of Chagas disease.


Assuntos
Transporte Biológico/efeitos dos fármacos , Isotretinoína/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Aminoácidos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Poliaminas/metabolismo
6.
Parasitol Int ; 65(5 Pt A): 472-82, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27312997

RESUMO

Two different putative galactokinase genes, found in the genome database of Trypanosoma cruzi were cloned and sequenced. Expression of the genes in Escherichia coli resulted for TcGALK-1 in the synthesis of a soluble and active enzyme, and in the case of TcGALK-2 gene a less soluble protein, with predicted molecular masses of 51.9kDa and 51.3kDa, respectively. The Km values determined for the recombinant proteins were for galactose 0.108mM (TcGALK-1) and 0.091mM (TcGALK-2) and for ATP 0.36mM (TcGALK-1) and 0.1mM (TcGALK-2). Substrate inhibition by ATP (Ki 0.414mM) was only observed for TcGALK-2. Gel-filtration chromatography showed that natural TcGALKs and recombinant TcGALK-1 are monomeric. In agreement with the possession of a type-1 peroxisome-targeting signal by both TcGALKs, they were found to be present inside glycosomes using two different methods of subcellular fractionation in conjunction with mass spectrometry. Both genes are expressed in epimastigote and trypomastigote stages since the respective proteins were immunodetected by western blotting. The T. cruzi galactokinases present their highest (52-47%) sequence identity with their counterpart from Leishmania spp., followed by prokaryotic galactokinases such as those from E. coli and Lactococcus lactis (26-23%). In a phylogenetic analysis, the trypanosomatid galactokinases form a separate cluster, showing an affiliation with bacteria. Epimastigotes of T. cruzi can grow in glucose-depleted LIT-medium supplemented with 20mM of galactose, suggesting that this hexose, upon phosphorylation by a TcGALK, could be used in the synthesis of UDP-galactose and also as a possible carbon and energy source.


Assuntos
Galactoquinase/genética , Galactose/metabolismo , Proteínas Recombinantes/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Microcorpos/metabolismo , Análise de Sequência de DNA , Trypanosoma cruzi/crescimento & desenvolvimento
7.
Int J Biol Macromol ; 87: 498-503, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26976067

RESUMO

Arginine kinase catalyzes the reversible transphosphorylation between ADP and phosphoarginine which plays a critical role in the maintenance of cellular energy homeostasis. Arginine kinase from the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, meets the requirements to be considered as a potential therapeutic target for rational drug design including being absent in its mammalian hosts. In this study a group of polyphenolic compounds was evaluated as potential inhibitors of arginine kinase using molecular docking techniques. Among the analyzed compounds with the lowest free binding energy to the arginine kinase active site (<-6.96kcal/mol), resveratrol was chosen for subsequent assays. Resveratrol inhibits 50% of recombinant arginine kinase activity at 325µM. The trypanocidal effect of resveratrol was evaluated on the T. cruzi trypomastigotes bursting from infected CHO K1 cells, with IC50=77µM. Additionally epimastigotes overexpressing arginine kinase were 5 times more resistant to resveratrol compared to controls. Taking into account that: (1) resveratrol is considered as completely nontoxic; (2) is easily accessible due to its low market price; and (3) has as a well-defined target enzyme which is absent in the mammalian host, it is a promising compound as a trypanocidal drug for Chagas disease.


Assuntos
Arginina Quinase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Estilbenos/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/enzimologia , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Simulação de Acoplamento Molecular , Polifenóis/farmacologia , Conformação Proteica , Resveratrol , Estilbenos/metabolismo , Tripanossomicidas/metabolismo , Trypanosoma cruzi/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA