Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 16(10): 20200609, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33108982

RESUMO

Progress in global shark conservation has been limited by constraints to understanding the species composition and geographic origins of the shark fin trade. Previous assessments that relied on earlier genetic techniques and official trade records focused on abundant pelagic species traded between Europe and Asia. Here, we combine recent advances in DNA barcoding and species distribution modelling to identify the species and source the geographic origin of fins sold at market. Derived models of species environmental niches indicated that shark fishing effort is concentrated within Exclusive Economic Zones, mostly in coastal Australia, Indonesia, the United States, Brazil, Mexico and Japan. By coupling two distinct tools, barcoding and niche modelling, our results provide new insights for monitoring and enforcement. They suggest stronger local controls of coastal fishing may help regulate the unsustainable global trade in shark fins.


Assuntos
Tubarões , Animais , Ásia , Austrália , Brasil , Conservação dos Recursos Naturais , Europa (Continente) , Japão , México , Tubarões/genética
2.
Ecol Lett ; 10(3): 219-29, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17305805

RESUMO

Many ecologists believe birds disappear from tropical forest fragments because they are poor dispersers. We test this idea using a spatially explicit capture data base from the Biological Dynamics of Forest Fragments Project near Manaus, Brazil. We measure bird movements directly, over relatively large scales of space and time, both before and after landscape fragmentation. We found that species which disappear from fragments move extensively between plots before isolation, but not after, and often disperse to longer distances in continuous forest than in fragmented forest. Such species also preferentially emigrate from smaller to larger fragments, showing no preference in continuous forest. In contrast, species that persist in fragments are generally less mobile, do not cross gaps as often, yet disperse further after fragmentation than before. 'Heavy tailed' probability models usually explain dispersal kernels better than exponential or Gaussian models, suggesting tropical forest birds may be better dispersers than assumed with some individuals moving very long distances.


Assuntos
Aves , Árvores , Animais , Brasil , Conservação dos Recursos Naturais , Monitoramento Ambiental , Dinâmica Populacional , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA