Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Res ; 57(1): 48, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034395

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an irreversible progressive CNS pathology characterized by the loss of myelin (i.e. demyelination). The lack of myelin is followed by a progressive neurodegeneration triggering symptoms as diverse as fatigue, motor, locomotor and sensory impairments and/or bladder, cardiac and respiratory dysfunction. Even though there are more than fourteen approved treatments for reducing MS progression, there are still no cure for the disease. Thus, MS research is a very active field and therefore we count with different experimental animal models for studying mechanisms of demyelination and myelin repair, however, we still lack a preclinical MS model assembling demyelination mechanisms with relevant clinical-like signs. RESULTS: Here, by inducing the simultaneous demyelination of both callosal and cerebellar white matter fibers by the double-site injection of lysolecithin (LPC), we were able to reproduce CNS demyelination, astrocyte recruitment and increases levels of proinflammatory cytokines levels along with motor, locomotor and urinary impairment, as well as cardiac and respiratory dysfunction, in the same animal model. Single site LPC-injections either in corpus callosum or cerebellum only, fails in to reproduce such a complete range of MS-like signs. CONCLUSION: We here report that the double-site LPC injections treatment evoke a complex MS-like mice model. We hope that this experimental approach will help to deepen our knowledge about the mechanisms of demyelinated diseases such as MS.


Assuntos
Cerebelo , Corpo Caloso , Doenças Desmielinizantes , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Animais , Esclerose Múltipla/patologia , Corpo Caloso/patologia , Cerebelo/patologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/induzido quimicamente , Camundongos , Masculino , Lisofosfatidilcolinas , Citocinas/metabolismo , Bainha de Mielina/patologia
2.
Curr Pharm Des ; 25(45): 4755-4762, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31840603

RESUMO

Myelin is a specialized membrane allowing for saltatory conduction of action potentials in neurons, an essential process to achieve the normal communication across the nervous system. Accordingly, in diseases characterized by the loss of myelin and myelin forming cells -oligodendrocytes in the CNS-, patients show severe neurological disabilities. After a demyelinated insult, microglia, astrocytes and oligodendrocyte precursor cells invade the lesioned area initiating a spontaneous process of myelin repair (i.e. remyelination). A preserved hallmark of this neuroinflammatory scenario is a local increase of oxidative stress, where several cytokines and chemokines are released by glial and other cells. This generates an environment that determines cell interaction resulting in oligodendrocyte maturity and the ability to synthesize new myelin. Herein we review the main features of the regulatory aspect of these molecules based on recent findings and propose new putative signal molecules involved in the remyelination process, focused in the etiology of Multiple Sclerosis, one of the main demyelinating diseases causing disabilities in the population.


Assuntos
Doenças Desmielinizantes/fisiopatologia , Neuroglia/citologia , Estresse Oxidativo , Comunicação Celular , Humanos , Inflamação/patologia , Esclerose Múltipla , Bainha de Mielina , Oligodendroglia/citologia
3.
Front Physiol ; 9: 1282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283346

RESUMO

Chronic sustained hypoxia (CSH) evokes ventilatory acclimatization characterized by a progressive hyperventilation due to a potentiation of the carotid body (CB) chemosensory response to hypoxia. The transduction of the hypoxic stimulus in the CB begins with the inhibition of K+ currents in the chemosensory (type-I) cells, which in turn leads to membrane depolarization, Ca2+ entry and the subsequent release of one- or more-excitatory neurotransmitters. Several studies have shown that CSH modifies both the level of transmitters and chemoreceptor cell metabolism within the CB. Most of these studies have been focused on the role played by such putative transmitters and modulators of CB chemoreception, but less is known about the effect of CSH on metabolism and membrane excitability of type-I cells. In this mini-review, we will examine the effects of CSH on the ion channels activity and excitability of type-I cell, with a particular focus on the effects of CSH on the TASK-like background K+ channel. We propose that changes on TASK-like channel activity induced by CSH may contribute to explain the potentiation of CB chemosensory activity.

4.
ACS Chem Neurosci ; 8(10): 2168-2179, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28665105

RESUMO

A better comprehension on how different molecular components of the serotonergic system contribute to the adequate regulation of behaviors in animals is essential in the interpretation on how they are involved in neuropsychiatric and pathological disorders. It is possible to study these components in "simpler" animal models including the fly Drosophila melanogaster, given that most of the components of the serotonergic system are conserved between vertebrates and invertebrates. Here we decided to advance our understanding on how the serotonin plasma membrane transporter (SERT) contributes to serotonergic neurotransmission and behaviors in Drosophila. In doing this, we characterized for the first time a mutant for Drosophila SERT (dSERT) and additionally used a highly selective serotonin-releasing drug, 4-methylthioamphetamine (4-MTA), whose mechanism of action involves the SERT protein. Our results show that dSERT mutant animals exhibit an increased survival rate in stress conditions, increased basal motor behavior, and decreased levels in an anxiety-related parameter, centrophobism. We also show that 4-MTA increases the negative chemotaxis toward a strong aversive odorant, benzaldehyde. Our neurochemical data suggest that this effect is mediated by dSERT and depends on the 4-MTA-increased release of serotonin in the fly brain. Our in silico data support the idea that these effects are explained by specific interactions between 4-MTA and dSERT. In sum, our neurochemical, in silico, and behavioral analyses demonstrate the critical importance of the serotonergic system and particularly dSERT functioning in modulating several behaviors in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Mutação/genética , Serotoninérgicos/metabolismo , Serotoninérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
5.
Mol Cell Neurosci ; 68: 314-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26311509

RESUMO

Hippocampal synapses play a key role in memory and learning processes by inducing long-term potentiation and depression. Wnt signaling is essential in the development and maintenance of synapses via several mechanisms. We have previously found that Wnt5a induces the production of nitric oxide (NO), which modulates NMDA receptor expression in the postsynaptic regions of hippocampal neurons. Here, we report that Wnt5a selectively inhibits a voltage-gated K(+) current (Kv current) and increases synaptic activity in hippocampal slices. Further supporting a specific role for Wnt5a, the soluble Frizzled receptor protein (sFRP-2; a functional Wnt antagonist) fully inhibits the effects of Wnt5a. We additionally show that these responses to Wnt5a are mediated by activation of a ROR2 receptor and increased NO production because they are suppressed by the shRNA-mediated knockdown of ROR2 and by 7-nitroindazole, a specific inhibitor of neuronal NOS. Together, our results show that Wnt5a increases NO production by acting on ROR2 receptors, which in turn inhibit Kv currents. These results reveal a novel mechanism by which Wnt5a may regulate the excitability of hippocampal neurons.


Assuntos
Hipocampo/citologia , Neurônios/fisiologia , Óxido Nítrico/metabolismo , Canais de Potássio/fisiologia , Sinapses/fisiologia , Proteínas Wnt/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Técnicas In Vitro , Indazóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução Genética , Proteína Wnt-5a , ômega-N-Metilarginina/farmacologia
6.
Bioresour Technol ; 190: 345-51, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25965951

RESUMO

The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species.


Assuntos
Compostos de Amônio/metabolismo , Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Oxigênio/metabolismo , Reologia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Nitritos/metabolismo , Nitrogênio/isolamento & purificação , Consumo de Oxigênio/fisiologia
7.
PLoS One ; 9(2): e89641, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586928

RESUMO

Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA) including serotonin (5HT) participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB). The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3(rd)-instar) exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R) were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae.


Assuntos
Aminas Biogênicas/metabolismo , Locomoção/fisiologia , Corpos Pedunculados/metabolismo , Receptores de Serotonina/biossíntese , Animais , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Fluoxetina/farmacologia , Larva/fisiologia , Locomoção/efeitos dos fármacos , Interferência de RNA , Receptores de Serotonina/genética
8.
Bioorg Med Chem ; 21(10): 2687-94, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23561269

RESUMO

Nicotine is an agonist of nicotinic acetylcholine receptors (nAChRs) that has been extensively used as a template for the synthesis of α4ß2-preferring nAChRs. Here, we used the N-methyl-pyrrolidine moiety of nicotine to design and synthesise novel α4ß2-preferring neonicotinic ligands. We increased the distance between the basic nitrogen and aromatic group of nicotine by introducing an ester functionality that also mimics acetylcholine (Fig. 2). Additionally, we introduced a benzyloxy group linked to the benzoyl moiety. Although the neonicotinic compounds fully inhibited binding of both [α-(125)I]bungarotoxin to human α7 nAChRs and [(3)H]cytisine to human α4ß2 nAChRs, they were markedly more potent at displacing radioligand binding to human α4ß2 nAChRs than to α7 nAChRs. Functional assays showed that the neonicotinic compounds behave as antagonists at α4ß2 and α4ß2α5 nAChRs. Substitutions on the aromatic ring of the compounds produced compounds that displayed marked selectivity for α4ß2 or α4ß2α5 nAChRs. Docking of the compounds on homology models of the agonist binding site at the α4/ß2 subunit interfaces of α4ß2 nAChRs suggested the compounds inhibit function of this nAChR type by binding the agonist binding site.


Assuntos
Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Humanos , Receptores Nicotínicos/química , Relação Estrutura-Atividade
9.
J Neurochem ; 125(2): 281-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23331098

RESUMO

Biogenic amines (BAs) play a central role in the generation of complex behaviors in vertebrates and invertebrates, including the fly Drosophila melanogaster. The comparative advantages of Drosophila as a genetic model to study the contribution of BAs to behaviors stumble upon the difficulty to access the fly brain to ask relevant physiological questions. For instance, it is not known whether the activation of nicotinic acetylcholine receptors (nAChRs) induces the release of BAs in fly brain, a phenomenon associated to several behaviors in vertebrates. Here, we describe a new preparation to study the efflux of BAs in the adult fly brain by in vitro chronoamperometry. Using this preparation we show that nAChR agonists including nicotine induce a fast, transient, dose-dependent efflux of endogenous BAs, an effect mediated by α-bungarotoxin-sensitive nAChRs. By using different genetic tools we demonstrate that the BA whose efflux is induced by nAChR activation is octopamine (Oct). Furthermore, we show that the impairment of a mechanically induced startle response after nicotine exposure is not observed in flies deficient in Oct transmission. Thus, our data show that the efflux of BAs in Drosophila brain is increased by nAChR activation as in vertebrates, and that then AChR-induced Oct release could have implications in a nicotine-induced behavioral response.


Assuntos
Drosophila melanogaster/metabolismo , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Octopamina/metabolismo , Receptores Nicotínicos/metabolismo , Reflexo de Sobressalto/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Técnicas Eletroquímicas , Masculino , Modelos Animais
10.
Respir Physiol Neurobiol ; 185(3): 600-7, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23219812

RESUMO

Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea, enhances carotid body (CB) chemosensory responses to acute hypoxia. In spite of that, the primary molecular target of CIH in the CB remains unknown. A key step of the hypoxic response in the CB is the chemoreceptor cell depolarization elicited by the inhibition of K(+) channels. Thus, we tested the hypothesis that CIH potentiates the hypoxic-induced depolarization of rat CB chemoreceptor cells by enhancing the inhibition of a background K(+) TASK-like channel. Membrane potential, single channel and macroscopic currents were recorded in the presence of TEA and 4-aminopyridine in CB chemoreceptor cells isolated from adult rats exposed to CIH. The CIH treatment did not modify the resting membrane properties but the hypoxic-evoked depolarization increased by 2-fold. In addition, the hypoxic inhibition of the TASK-like channel current was larger and faster in glomus cells from CIH-treated animals. This novel effect of CIH may contribute to explain the enhancing effect of CIH on CB oxygen chemoreception.


Assuntos
Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/metabolismo , Hipóxia/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Hipóxia/fisiopatologia , Imuno-Histoquímica , Masculino , Potenciais da Membrana/fisiologia , Proteínas do Tecido Nervoso , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA