Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 22(9): 217, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27553302

RESUMO

Theoretical chemistry calculations using the Density Functional Theory (DFT) were carried out to understand the interaction between oxygen (O2) and MnN4 type manganese-based complexes during the formation of MnN4-O2 adducts. In order to understand how this interaction is affected by different macrocyclic ligands, O2 was bonded to manganese-porphyrin (MnP), manganese-octamethylporphyrin (MnOMP), manganese-tetraaza[14]annulene (MnTAA), manganese-dibenzo [b,i] [1, 4, 8, 11]-tetraaza [14] annulene (MnDBTAA), manganese-2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene ([(tim)Mn](2+)), and manganese-2,3,9,10-tetraphenyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene ([(ph-tim)Mn](2+)). The binding and activation of the oxygen molecule was facilitated by an increasing trend in the O-O bond lengths and a decreasing one in the O-O vibrational frequency, with preference for the O2 side-on interaction among MnN4 macrocycles. The catalytic activities of the MnN4 complexes toward the O2 binding process increased in the following order: [(ph-tim)Mn](2+) < MnP < MnOMP < MnDBTAA < MnTAA < [(tim)Mn](2+). Therefore, it was concluded that the [(tim)Mn](2+)complex was the most active for the binding and activation of molecular oxygen.

2.
Talanta ; 83(5): 1701-6, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21238771

RESUMO

Flow injection analysis (FIA) with amperometric detection was employed for the quantification of N-acetylcysteine (NAC) in pharmaceutical formulations, utilizing an ordinary pyrolytic graphite (OPG) electrode modified with cobalt phthalocyanine (CoPc). Cyclic voltammetry was used in preliminary studies to establish the best conditions for NAC analysis. In FIA-amperometric experiments the OPG-CoPc electrode exhibited sharp and reproducible current peaks over a wide linear working range (5.0×10(-5)-1.0×10(-3) mol L(-1)) in 0.1 mol L(-1) NaOH solution. High sensitivity (130 mA mol(-1) cm(2)) and a low detection limit (9.0×10(-7) mol L(-1)) were achieved using the sensor. The repeatability (R.S.D.%) for 13 successive flow injections of a solution containing 5.0×10(-4) mol L(-1) NAC was 1.1%. The new procedure was applied in analyses of commercial pharmaceutical products and the results were in excellent agreement with those obtained using the official titrimetric method. The proposed amperometric method is highly suitable for quality control analyses of NAC in pharmaceuticals since it is rapid, precise and requires much less work than the recommended titrimetric method.


Assuntos
Acetilcisteína/análise , Grafite/química , Indóis/química , Compostos Organometálicos/química , Preparações Farmacêuticas/química , Acetilcisteína/química , Eletroquímica/métodos , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA