Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35681899

RESUMO

Direct-fed microbials (DFM) are added to broiler chicken diets in order to promote the proliferation of beneficial intestinal bacterial populations, which may lead to gains in performance efficiency and, potentially, reduce the level of enteric pathogens in the broiler chickens. The selection and laboratory evaluation of Bacillus subtilis strains as well as the experimental trial results of a novel Bacillus-based commercial DFM product are described. Fifteen wild-type Bacillus subtilis strains were characterized and assayed for their enzyme production capability, spore resistance to pH, salinity, and temperature, and ability to inhibit the growth of E. coli and Salmonella spp. The final DFM formulation was evaluated and compared to an antibiotic growth promoter (AGPs) in two experimental trials. In Experiment 1, broilers were given a defined challenge of Eimeria spp. and Clostridium perfringens to induce intestinal dysbiosis. The optimal dose of the DFM was determined to be 0.3 kg/ton of feed. At this dose, the broilers fed the DFM performed as well as the Flavomycin®-fed broilers. Further, intestinal microbiome analysis indicates that the use of the DFM enhances bacterial diversity of the gut flora by day 5 of age, increasing levels of lactic acid bacteria (LAB) and Clostridiales by 25 days of age, which may enhance the digestion of feed and promote growth of the birds. In Experiment 2, the broilers were raised on recycled litter and given an undefined challenge orally to mimic commercial growth conditions. In this trial, the DFM performed as well as the bacitracin methylene disalicylate (BMD)-11%-fed birds. The results of the present studies suggest that this novel DFM, Zymospore®, improves the performance of broiler chickens under experimental challenge conditions as effective as an AGP, providing a safe and effective substitute to the poultry industry.

2.
Poult Sci ; 100(9): 101329, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34333387

RESUMO

This study evaluated growth performance and cross-protection against Eimeria spp. using a subunit coccidia vaccine in 2 independent challenge experiments. In both trials, chickens were challenged with E. acervulina, E. maxima, and E. tenella oocysts. In Exp 1, 1000-day-old chickens were allocated in one of 2 treatments 1) Control group; 2) Biotech Vac Cox group. The vaccine was orally gavaged on d 2 and 16 of life and coccidia challenge was on d 21. Performance parameters were evaluated on d 21, 35, and 42. On d 34, coccidia lesions were scored. Oocysts per gram of feces (OPG) were evaluated on d 28, 35, and 42. In Exp 2, 900-day-old chickens were assigned in one of 2 treatments 1) Control group; 2) Biotech Vac Cox group. The vaccine was orally gavaged on d 2 and 16 of life and coccidia challenge was on d 21. Performance parameters were evaluated on d 21, 27, 35, and 42, and lesion scores and OPG at d 27. In Exp 1, chickens vaccinated had significantly lower feed intake (FI) at d 21 and feed conversion ratio (FCR) at d 35 compared to control chickens (P < 0.05). Vaccinated chickens showed a significant reduction (P ≤ 0.05) in OPG for E. maxima to nondetectable levels and for all coccidian species at d 42 compared to control chickens. In Exp 2, the chickens vaccinated showed a significant increase in BW, BW gain (BWG) and reduction in FCR on d 27, 35, and 42 (P ≤ 0.05). Vaccinated chickens had significantly lower (P ≤ 0.05) lesion scores for all 3 Eimeria species. Moreover, vaccinated chickens had a reduction in total OPG of 35.50% (P = 0.0739). Studies to evaluate the serological and mucosal immune response are currently being evaluated. This inactivated, orally delivered subunit vaccine offers significant cross-protection to Eimeria spp. and eliminates the needs to treat broilers with live oocysts, enhanced ease of use, and greater biosecurity to producers.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Ração Animal/análise , Animais , Biotecnologia , Galinhas , Coccidiose/prevenção & controle , Coccidiose/veterinária , Doenças das Aves Domésticas/prevenção & controle , Vacinas de Subunidades Antigênicas
3.
Front Vet Sci ; 8: 652730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34169104

RESUMO

The present study evaluated the effect of administration of a water applied prebiotic on gut barrier failure (Experiment 1) and performance in broiler chickens under commercial conditions (Experiment 2). Experiment 1, one thousand four hundred and forty day-of-hatch Ross broiler chickens were assigned to one of two experimental groups (n = 30 replicate pens/treatment; n = 24 chicks/pen). Birds in the treated group received the prebiotic orally in the drinking water (0.2ml/bird) on days 3 and 17 of age. The second group served as the untreated control group. On d 18, intestinal samples were analyzed by qRT-PCR to determine the expression of MUC2, IL-8, TGF-ß4, and ZO-1. On d 17, d 28, and d 35 blood samples were collected to determine circulating endotoxin levels. On d 28, mucosal intestinal scrapping was collected to measure relative total sIgA levels. At d 42, liver samples were collected to evaluate liver bacterial translocation. In Experiment 2, the prebiotic was evaluated in two commercial trials. Chickens were raised under normal production conditions and fed a 3-phase commercial basal diet with enramycin (7 g/ton). In Trial 1, 8,974,237 broiler chickens were treated with the prebiotic. The prebiotic was administered in the drinking water (0.2 mL/bird) following the manufacture label instructions at day three and seventeen of life. Production parameters were compared to historical information from the company over the same broiler operation and production cycles. For trial 2, 921,411 broiler chickens were treated with the prebiotic as in Trial 1. In Experiment 1, treated chickens showed a significant (P < 0.05) increase in mRNA expression of MUC2, TGF-ß4, IL-8, ZO-1, and sIgA, but a significant reduction of serum endotoxin levels and incidence of liver lactose positive bacterial translocation when compared to non-treated chickens. In both trials of Experiment 2, a significant reduction in total mortality was observed in the treated chickens when compared with the historical farm data. Economic analysis utilizing the total percent of mortality revealed a $1: $2.50 USD and $1: $4.17 USD return for Trial 1 and Trial 2, respectively. The results suggest that the prebiotic positively influences gastrointestinal integrity and performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA