Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Water Environ Res ; 96(1): e10981, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38264917

RESUMO

Green-synthesized iron nanoparticles (GAP-FeNP) were used as particle electrodes in a three-dimensional electro-Fenton (3DEF) process to accelerate the removal of hexavalent chromium [Cr (VI)]. Removal was evaluated by varying the pH (3.0, 6.0, and 9.0) and initial Cr (VI) concentrations (10, 30, and 50 mg/L) at 5 and 25 min. These results demonstrated that GAP-FeNP/3DEF treatment achieved more than 94% Cr (VI) removal under all tested conditions. Furthermore, it was observed that Cr (VI) removal exceeded 98% under pH 9.0 in all experimental parameters tested. The results of the response surface methodology (RSM) determined two optimal conditions: the first, characterized by a pH of 3.0, Cr (VI) concentration at 50 mg/L, and 25 min, yielded a Cr (VI) removal of 99.7%. The second optimal condition emerged at pH 9.0, with Cr (VI) concentrations of 10 mg/L and 5 min, achieving a Cr (VI) removal of 99.5%. This study highlights the potential of the GAP-FeNP to synergistically accelerate Cr (VI) removal by the 3DEF process, allowing faster elimination and expansion of the alkaline (pH 9.0) applicability. PRACTITIONER POINTS: The required time for >99% of Cr (VI) removal by the GAP-FeNP/3DEF process was shortened from 25 to 5 min. EF process with GAP-FeNP reduces the time necessary for Cr (VI) removal, which is 67% faster than conventional methods. EF process using GAP-FeNP removed >94% of Cr (VI) after 25 min for all initial Cr (VI) concentrations and pH treatments. Cr (VI) removal by the GAP-FeNP/3DEF process was >98% at a pH of 9.0, widening the solution pH applicability.


Assuntos
Ferro , Nanopartículas , Eletrodos
2.
Odovtos (En línea) ; 25(3): 67-81, Sep.-Dec. 2023. graf
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1529070

RESUMO

Abstract To compare the physicochemical composition of 4 MTAs commercially available in Latin America. ProRoot MTA (Dentsply, USA), MTA Angelus (Angelus, Brazil), MTA Flow (Ultradent, USA), and MTA Viarden (Viarden, Mexico) were physically and chemically compared. Scanning electron microscopy (SEM) images were obtained from the MTA powder and the prepared presentations. Energy Dispersive X-Ray Spectroscopy (EDS) analyses were performed by triplicate, to calculate the mass proportion of calcium (Ca), silicon (Si), the Ca/Si proportion among the 4 brands. Thermogravimetric analyses (TGA) were conducted (50ºC-1000ºC), and mass loss and inflection points were calculated for each material. Statistical differences for Ca and Si content were determined by ANOVA (p<0.05). SEM images showed evident differences in the appearance of both the powder and the prepared MTAs among brands. Angelus MTA showed cubic prisms not observed in the other 3 brands. ProRoot MTA and MTA Flow showed similar homogeneous structures. MTA Viarden was the less homogeneous, with random structures (>15um). When comparing the mass proportions of Ca and Si between the 4 powder samples, MTA Viarden showed a significantly lower proportions of both elements when compared with the other brands (p<0.005). TGA análisis showed a similar behavior for ProRoot MTA, MTA Angelus and MTA Flow, with less than 2% mass loss when the 1000C temperature was reached. MTA Viarden showed a mass loss of 9,94% before the 700C, indicating the presence of different content sensible to temperature degradation. The analyzed MTAs demonstrated to vary significantly in their chemical composition and physical characteristics. Clinicians must be aware of the differences between different brands of a same material, and future research should focus on the clinical implications of these differences.


Resumen Comparar la composición fisicoquímica de 4 MTA disponibles comercialmente en América Latina. Se compararon física y químicamente ProRoot MTA (Dentsply, EE. UU.), MTA Angelus (Angelus, Brasil), MTA Flow (Ultradent, EE. UU.) y MTA Viarden (Viarden, México). Se obtuvieron imágenes de microscopía electrónica de barrido (SEM) del polvo de MTA y de las presentaciones preparadas. Los análisis de espectroscopía de dispersión de energía de rayos X (EDS) se realizaron por triplicado para calcular la proporción de masa de calcio (Ca), silicio (Si), la proporción Ca/Si entre las 4 marcas. Se realizaron análisis termogravimétricos (TGA) (50ºC-1000ºC), y se calcularon las pérdidas de masa y los puntos de inflexión para cada material. Las diferencias estadísticas para el contenido de Ca y Si se determinaron mediante ANOVA (p<0,05). Los análisis SEM mostraron diferencias evidentes en la apariencia tanto del polvo como las preparaciones de los MTA, entre las diferentes marcas. MTA Angelus mostró prismas cúbicos no observados en las otras 3 marcas. ProRoot MTA y MTA Flow mostraron estructuras homogéneas similares. MTA Viarden fue el menos homogéneo, con estructuras aleatorias (>15um). Al comparar las proporciones de masa de Ca y Si entre las 4 muestras de polvo, MTA Viarden mostró proporciones significativamente más bajas de ambos elementos en comparación con las otras marcas (p<0,005). El análisis TGA mostró un comportamiento similar para ProRoot MTA, MTA Angelus y MTA Flow, con menos del 2 % de pérdida de masa al alcanzar los 1000 °C de temperatura. El MTA Viarden mostró una pérdida de masa de 9,94% antes de los 700 °C, indicando la presencia de diferentes contenidos sensibles a la degradación por temperatura. Los MTA analizados demostraron diferencias significativas en su composición química y características físicas. Los clínicos deben ser conscientes de las diferencias entre las diferentes marcas de un mismo material, y futuras investigaciones deben enfocarse en las implicaciones clínicas de estas diferencias.


Assuntos
Microscopia Eletrônica de Varredura , Cerâmica/análise , Endodontia , Materiais Biocompatíveis
3.
Biotechnol Rep (Amst) ; 40: e00816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020726

RESUMO

In the present study, silver nanoparticles (AgNPs) were biosynthesized using the supernatant and the intracellular extract of Cupriavidus necator, Bacillus megaterium, and Bacillus subtilis. The characterization of the AgNPs was carried out using UV-Vis spectroscopy, FTIR, DLS and TEM. Resazurin microtiter-plate assay was used to determine the antimicrobial action of AgNPs against Escherichia coli. UV-Visible spectra showed peaks between 414 and 460 nm. TEM analysis revealed that the synthesized AgNPs showed mostly spherical shapes. DLS results determined sizes from 20.8 to 118.4 nm. The highest antimicrobial activity was obtained with the AgNPs synthesized with supernatant rather than those using the intracellular extract. Therefore, it was determined that the bacterial species, temperature, pH, and type of extract (supernatant or intracellular) influence the biosynthesis. This synthesis thus offers a simple, environmentally friendly, and low-cost method for the production of AgNPs, which can be used as antibacterial agents.

4.
Pharmaceutics ; 15(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896206

RESUMO

The dissolution rate of the anti-HIV drug saquinavir base (SQV), a poorly water-soluble and extremely low absolute bioavailability drug, was improved through a eutectic mixture formation approach. A screening based on a liquid-assisted grinding technique was performed using a 1:1 molar ratio of the drug and the coformers sodium saccharinate, theobromine, nicotinic acid, nicotinamide, vanillin, vanillic acid, and piperine (PIP), followed by differential scanning calorimetry (DSC). Given that SQV-PIP was the only resulting eutectic system from the screening, both the binary phase and the Tammann diagrams were adapted to this system using DSC data of mixtures prepared from 0.1 to 1.0 molar ratios in order to determine the exact eutectic composition. The SQV-PIP system formed a eutectic at a composition of 0.6 and 0.40, respectively. Then, a solid-state characterization through DSC, powder X-ray diffraction (PXRD), including small-angle X-ray scattering (SAXS) measurements to explore the small-angle region in detail, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a powder dissolution test were performed. The conventional PXRD analyses suggested that the eutectic mixture did not exhibit structural changes; however, the small-angle region explored through the SAXS instrument revealed a change in the crystal structure of one of their components. FT-IR spectra showed no molecular interaction in the solid state. Finally, the dissolution profile of SQV in the eutectic mixture was different from the dissolution of pure SQV. After 45 min, approximately 55% of the drug in the eutectic mixture was dissolved, while, for pure SQV, 42% dissolved within this time. Hence, this study concludes that the dissolution rate of SQV can be effectively improved through the approach of using PIP as a coformer.

5.
Polymers (Basel) ; 14(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36432989

RESUMO

Pineapple is a highly demanded fruit in international markets due to its unique appearance and flavor, high fiber content, vitamins, folic acid, and minerals. It makes pineapple production and processing a significant source of income for producing countries, such as Costa Rica. This review collects bibliographic information dating back to the beginnings of pineapple production in Costa Rica to the state of the market today. It details the impacts of its production chain and proposes a biorefinery as a solution to environmental problems. Besides the potentiality of new sustainable markets to contribute to the post-COVID-19 economy in Costa Rica is highlighted. The general characteristics of pineapple by-products -cellulose, hemicellulose, lignin, and other high-value products like bromelain y saponin- are described, as well as the primary processes for their ex-traction via biorefinery and main applications in the medical field. Finally, a brief description of the main works in the literature involving modeling and simulation studies of pineapple by-products properties is included.

6.
Biomedicines ; 10(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36289694

RESUMO

Poor solubility and short biological half-life present a challenge that needs to be overcome in order to improve the recognized bioactivities of curcumin (CUR), the main phenolic compounds derived from the roots of Curcuma longa. However, drug delivery systems have proven to be an excellent strategy to improve and obtain greater bioavailability. Our previous studies on curcuminoid hybrid nanoparticles have shown promising results by significantly increasing the solubility of desmethoxycurcumin (DMC) and bisdemethoxycurcumin (BDM). In this contribution, we performed a detailed characterization of a CUR as well as in vitro and in vivo studies. The developed method produced CUR loaded nanoparticles with an average size of 49.46 ± 0.80. Moreover, the FT-IR analysis confirmed the encapsulation, and TEM images showed their spherical shape. The NP achieved an encapsulation efficiency greater than 99%. Further, the release studies found that the NPs obtained a significantly higher release than the pure compounds in water. In vivo delayed-type hypersensitivity (DTH) studies showed promising results by enhancing the immune activity response of CUR in NP compared to bulk CUR. Furthermore, we report a significant increase in antioxidant activity for CUR-NP in aqueous solution compared to free CUR. Finally, an important in vitro cytotoxic effect on gastric AGS and colon SW620 adenocarcinoma cell lines was found for CUR-NP while empty carrier nanoparticles are observed to exhibit low cytotoxicity, indicating the potential of these CUR-PLU NPs for further studies to assess their phytotherapeutic applications.

7.
Plants (Basel) ; 11(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807688

RESUMO

Previous studies in Uncaria tomentosa have shown promising results concerning the characterization of polyphenols with leaves yielding more diverse proanthocyanidins and higher bioactivities values. However, the polyphenols-microbiota interaction at the colonic level and their catabolites avoid the beneficial effects that can be exerted by this medicinal plant when consumed. In this regard, a new generation of hybrid nanoparticles has demonstrated improvements in natural compounds' activity by increasing their bioavailability. In this line, we report a detailed study of the characterization of a proanthocyanidin-enriched extract (PA-E) from U. tomentosa leaves from Costa Rica using UPLC-QTOF-ESI MS. Moreover, two types of hybrid nanoparticles, a polymeric-lipid (F-1) and a protein-lipid (F-2) loaded with PA-E were synthesized and their characterization was conducted by dynamic light scattering (DLS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR), high-resolution transmission electron microscopy (HR-TEM), and encapsulation efficiency (%EE). In addition, in vitro release, antioxidant activity through 2,2-diphenyl-1-picrylhidrazyl (DPPH) as well as in vivo delayed-type hypersensitivity (DTH) reaction was evaluated. Results allowed the identification of 50 different compounds. The PA-E loaded nanoparticles F-1 and F-2 achieved encapsulation efficiency of ≥92%. The formulations exhibited porosity and spherical shapes with a size average of 26.1 ± 0.8 and 11.8 ± 3.3 nm for F-1 and F-2, respectively. PA-E increased its release rate from the nanoparticles compared to the free extract in water and antioxidant activity in an aqueous solution. In vivo, the delayed-type hypersensitive test shows the higher immune stimulation of the flavan-3-ols with higher molecular weight from U. tomentosa when administered as a nanoformulation, resulting in augmented antigen-specific responses. The present work constitutes to our knowledge, the first report on these bioactivities for proanthocyanidins from Uncaria tomentosa leaves when administrated by nanosystems, hence, enhancing the cellular response in mice, confirming their role in immune modulation.

8.
Molecules ; 27(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35566108

RESUMO

Bovine Serum Albumin (BSA) lipid hybrid nanoparticles are part of the new solutions to overcome low bioavailability of poor solubility drugs such as curcuminoids, which possess multiple biological advantages; however, they are counterbalanced by its short biological half-life. In this line, we prepared the three main curcuminoids: curcumin (CUR), desmethoxycurcumin (DMC), and bisdemethoxycurcumin (BDM)-loaded BSA nanoparticles. The three formulations were characterized by the average size, size distribution, crystallinity, weight loss, drug release, kinetic mechanism, and antioxidant activity. The developed method produced CUR-, DMC-, and BDM-loaded BSA nanoparticles with a size average of 15.83 ± 0.18, 17.29 ± 3.34, and 15.14 ± 0.14 nm for CUR, DMC, and BDM loaded BSA, respectively. FT-IR analysis confirmed the encapsulation, and TEM images showed their spherical shape. The three formulations achieved encapsulation efficiency upper to 96% and an exhibited significantly increased release from the nanoparticle compared to free compounds in water. The antioxidant activity was enhanced as well, in agreement with the improvement in water release, obtaining IC50 values of 9.28, 11.70, and 15.19 µg/mL for CUR, DMC, and BDM loaded BSA nanoparticles, respectively, while free curcuminoids exhibited considerably lower antioxidant values in aqueous solution. Hence, this study shows promises for such hybrid systems, which have been ignored so far, regarding proper encapsulation, protection, and delivery of curcuminoids for the development of functional foods and pharmaceuticals.


Assuntos
Curcumina , Nanopartículas , Antioxidantes/farmacologia , Curcuma , Curcumina/farmacologia , Diarileptanoides , Tamanho da Partícula , Soroalbumina Bovina , Espectroscopia de Infravermelho com Transformada de Fourier , Água
9.
ACS Omega ; 7(17): 14897-14909, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557697

RESUMO

The design of new pharmaceutical solids with improved physical and chemical properties can be reached through in-detail knowledge of the noncovalent intermolecular interactions between the molecules in the context of crystal packing. Although crystallization from solutions is well-known for obtaining new solids, the effect of some variables on crystallization is not yet thoroughly understood. Among these variables, solvents are noteworthy. In this context, the present study aimed to investigate the effect of ethanol (EtOH), acetonitrile (MeCN), and acetone (ACTN) on obtaining irbesartan (IBS) crystal forms with 2,3-dibromosuccinic acid. Crystal structures were solved by single-crystal diffraction, and the intermolecular interactions were analyzed using the Hirshfeld surfaces analysis. The characterization of physicochemical properties was carried out by powder X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), thermal analysis, and solution-state NMR techniques. Two different IBS salts were obtained, one from MeCN and ACTN (compound 1) and a different one from EtOH (compound 2). The experimental results were in agreement with the findings obtained through quantum mechanics continuum solvation models. Compound 1 crystallized as a monoclinic system P21/c, whereas compound 2 in a triclinic system P1̅. In both structures, a net of strong hydrogen bonds is present, and their existence was confirmed by the FT-IR results. In addition, the IBS cation acts as a H-bond donor through the N1 and N6 nitrogen atoms which interact with the bromide anion and the water molecule O1W in compound 1. Meanwhile, N1 and N6 nitrogen atoms interact with the oxygen atoms provided by two symmetry-related 2,3-dibromo succinate anions in compound 2. Solution-state NMR data agreed with the protonation of the imidazolone ring in the crystal structure of compound 1. Both salts presented a different thermal behavior not only in melting temperature but also in thermal stability.

10.
AAPS PharmSciTech ; 23(5): 127, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474407

RESUMO

Piperine (PIP) was evaluated as a natural coformer in the preparation of multicomponent organic materials for enhancing solubility and dissolution rate of the poorly water-soluble drugs: curcumin (CUR), lovastatin (LOV), and irbesartan (IBS). A screening based on liquid assisted grinding technique was performed using 1:1 drug-PIP molar ratio mixtures, followed by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) analyses. Three eutectic mixtures (EMs) composed of CUR-PIP, LOV-PIP, and IBS-PIP were obtained. Therefore, binary phase and Tamman's diagrams were constructed for each system to obtain the exact eutectic composition, which was 0.41:0.59, 0.29:0.71, and 0.31:0.69 for CUR-PIP, LOV-PIP, and IBS-PIP, respectively. Further, bulk materials of each system were prepared to characterize them through DSC, PXRD fully, Fourier transform infrared spectroscopy (FT-IR), and solution-state nuclear magnetic resonance (NMR) spectroscopy. In addition, the contact angle, solubility, and dissolution rate of each system were evaluated. The preserved characteristic in the PXRD patterns and FT-IR spectra of the bulk material of each system confirmed the formation of EM mixture without molecular interaction in solid-state. The formation of EM resulted in improved aqueous solubility and dissolution rate associated with the increased wettability observed by the decrease in contact angle. In addition, solution NMR analyses of CUR-PIP, LOV-PIP, and IBS-PIP suggested no significant intermolecular interactions in solution between the components of the EM. Hence, this study concludes that PIP could be an effective coformer to improve the solubility and dissolution rate of CUR, LOV, and IBS.


Assuntos
Curcumina , Irbesartana , Lovastatina , Piperidinas , Alcaloides , Benzodioxóis , Doenças Cardiovasculares , Curcumina/química , Irbesartana/química , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Pós/química , Espectroscopia de Infravermelho com Transformada de Fourier , Lovastatina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA