Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biol Res ; 54(1): 19, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238380

RESUMO

In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth's crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.


Assuntos
Silício , Estresse Fisiológico , Agricultura , Plantas , Solo
2.
Biol Res ; 54(1): 15, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933166

RESUMO

BACKGROUND: Water stress is one of the serious abiotic stresses that negatively influences the growth, development and production of sugarcane in arid and semi-arid regions. However, silicon (Si) has been applied as an alleviation strategy subjected to environmental stresses. METHODS: In this experiment, Si was applied as soil irrigation in sugarcane plants to understand the mitigation effect of Si against harmful impact of water stress on photosynthetic leaf gas exchange. RESULTS: In the present study we primarily revealed the consequences of low soil moisture content, which affect overall plant performance of sugarcane significantly. Silicon application reduced the adverse effects of water stress by improving the net photosynthetic assimilation rate (Anet) 1.35-18.75%, stomatal conductance to water vapour (gs) 3.26-21.57% and rate of transpiration (E) 1.16-17.83%. The mathematical models developed from the proposed hypothesis explained the functional relationships between photosynthetic responses of Si application and water stress mitigation. CONCLUSIONS: Silicon application showed high ameliorative effects on photosynthetic responses of sugarcane to water stress and could be used for mitigating environmental stresses in other crops, too, in future.


Assuntos
Saccharum , Silício , Desidratação , Fotossíntese , Folhas de Planta , Água
3.
Biol. Res ; 54: 15-15, 2021. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1505808

RESUMO

BACKGROUND: Water stress is one of the serious abiotic stresses that negatively influences the growth, development and production of sugarcane in arid and semi-arid regions. However, silicon (Si) has been applied as an alleviation strategy subjected to environmental stresses. METHODS: In this experiment, Si was applied as soil irrigation in sugarcane plants to understand the mitigation effect of Si against harmful impact of water stress on photosynthetic leaf gas exchange. RESULTS: In the present study we primarily revealed the consequences of low soil moisture content, which affect overall plant performance of sugarcane significantly. Silicon application reduced the adverse effects of water stress by improving the net photosynthetic assimilation rate (Anet) 1.35-18.75%, stomatal conductance to water vapour (gs) 3.26-21.57% and rate of transpiration (E) 1.16-17.83%. The mathematical models developed from the proposed hypothesis explained the functional relationships between photosynthetic responses of Si application and water stress mitigation. CONCLUSIONS: Silicon application showed high ameliorative effects on photosynthetic responses of sugarcane to water stress and could be used for mitigating environmental stresses in other crops, too, in future.


Assuntos
Silício , Saccharum , Fotossíntese , Água , Folhas de Planta , Desidratação
4.
Biol. Res ; 54: 19-19, 2021. tab
Artigo em Inglês | LILACS | ID: biblio-1505788

RESUMO

In the era of climate change, due to increased incidences of a wide range of various environmental stresses, especially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After oxygen, silicon (Si) is the second most abundant element in the earth's crust. It is not considered as an important element, but can be thought of as a multi-beneficial quasi-essential element for plants. This review on silicon presents an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the decrease in the number of seed intensities/soil-borne and foliar diseases of major plant varieties that are infected by biotrophic, hemi-biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and number of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabolomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in the future.


Assuntos
Silício , Estresse Fisiológico , Plantas , Solo , Agricultura
5.
Biol Res ; 53(1): 47, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33066819

RESUMO

Nitrogen is the main limiting nutrient after carbon, hydrogen and oxygen for photosynthetic process, phyto-hormonal, proteomic changes and growth-development of plants to complete its lifecycle. Excessive and inefficient use of N fertilizer results in enhanced crop production costs and atmospheric pollution. Atmospheric nitrogen (71%) in the molecular form is not available for the plants. For world's sustainable food production and atmospheric benefits, there is an urgent need to up-grade nitrogen use efficiency in agricultural farming system. The nitrogen use efficiency is the product of nitrogen uptake efficiency and nitrogen utilization efficiency, it varies from 30.2 to 53.2%. Nitrogen losses are too high, due to excess amount, low plant population, poor application methods etc., which can go up to 70% of total available nitrogen. These losses can be minimized up to 15-30% by adopting improved agronomic approaches such as optimal dosage of nitrogen, application of N by using canopy sensors, maintaining plant population, drip fertigation and legume based intercropping. A few transgenic studies have shown improvement in nitrogen uptake and even increase in biomass. Nitrate reductase, nitrite reductase, glutamine synthetase, glutamine oxoglutarate aminotransferase and asparagine synthetase enzyme have a great role in nitrogen metabolism. However, further studies on carbon-nitrogen metabolism and molecular changes at omic levels are required by using "whole genome sequencing technology" to improve nitrogen use efficiency. This review focus on nitrogen use efficiency that is the major concern of modern days to save economic resources without sacrificing farm yield as well as safety of global environment, i.e. greenhouse gas emissions, ammonium volatilization and nitrate leaching.


Assuntos
Agricultura , Monitoramento Ambiental , Nitrogênio/metabolismo , Fertilizantes , Nitratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA