Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Hered ; 115(5): 541-551, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38757192

RESUMO

The underlying processes behind the formation, evolution, and long-term maintenance of multiple sex chromosomes have been largely neglected. Among vertebrates, fishes represent the group with the highest diversity of multiple sex chromosome systems and, with six instances, the Neotropical fish genus Harttia stands out by presenting the most remarkable diversity. However, although the origin mechanism of their sex chromosome systems is well discussed, little is known about the importance of some repetitive DNA classes in the differentiation of multiple systems. In this work, by employing a combination of cytogenetic and genomic procedures, we evaluated the satellite DNA composition of H. carvalhoi with a focus on their role in the evolution, structure, and differentiation process of the rare XY1Y2 multiple-sex chromosome system. The genome of H. carvalhoi contains a total of 28 satellite DNA families, with the A + T content ranging between 38.1% and 68.1% and the predominant presence of long satellites. The in situ hybridization experiments detected 15 satellite DNAs with positive hybridization signals mainly on centromeric and pericentromeric regions of almost all chromosomes or clustered on a few pairs. Five of them presented clusters on X, Y1, and/or Y2 sex chromosomes which were therefore selected for comparative hybridization in the other three congeneric species. We found several conserved satellites accumulated on sex chromosomes and also in regions that were involved in chromosomal rearrangements. Our results provide a new contribution of satellitome studies in multiple sex chromosome systems in fishes and represent the first satellitome study for a Siluriformes species.


Assuntos
Peixes-Gato , DNA Satélite , Cromossomos Sexuais , Animais , DNA Satélite/genética , Peixes-Gato/genética , Cromossomos Sexuais/genética , Masculino , Feminino , Evolução Molecular , Hibridização in Situ Fluorescente
2.
Genetica ; 152(2-3): 63-70, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587599

RESUMO

The high dynamism of repetitive DNAs is a major driver of chromosome evolution. In particular, the accumulation of repetitive DNA sequences has been reported as part of the differentiation of sex-specific chromosomes. In turn, the fish species of the genus Megaleporinus are a monophyletic clade in which the presence of differentiated ZZ/ZW sex chromosomes represents a synapomorphic condition, thus serving as a suitable model to evaluate the dynamic evolution of repetitive DNA classes. Therefore, transposable elements (TEs) and in tandem repeats were isolated and located on chromosomes of Megaleporinus obtusidens and M. reinhardti to infer their role in chromosome differentiation with emphasis on sex chromosome systems. Despite the conserved karyotype features of both species, the location of repetitive sequences - Rex 1, Rex 3, (TTAGGG)n, (GATA)n, (GA)n, (CA)n, and (A)n - varied both intra and interspecifically, being mainly accumulated in Z and W chromosomes. The physical mapping of repetitive sequences confirmed the remarkable dynamics of repetitive DNA classes on sex chromosomes that might have promoted chromosome diversification and reproductive isolation in Megaleporinus species.


Assuntos
Caraciformes , Evolução Molecular , Sequências Repetitivas de Ácido Nucleico , Cromossomos Sexuais , Animais , Cromossomos Sexuais/genética , Caraciformes/genética , Caraciformes/classificação , Masculino , Elementos de DNA Transponíveis/genética , Cariótipo , Feminino
3.
Zebrafish ; 20(5): 221-228, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37797225

RESUMO

Small nuclear DNA (snDNA) are valuable cytogenetic markers for comparative studies in chromosome evolution because different distribution patterns were found among species. Parodontidae, a Neotropical fish family, is known to have female heterogametic sex chromosome systems in some species. The U2 and U4 snDNA sites have been found to be involved in Z and W chromosome differentiation in Apareiodon sp., Apareiodon affinis, and Parodon hilarii. However, few studies have evaluated snDNA sites as propulsors of chromosome diversification among closely related fish species. In this study, we investigated the distribution of U2 and U4 snDNA clusters in the chromosomes of 10 populations/species belonging to Apareiodon and Parodon, aiming to identify chromosomal homeologies or diversification. In situ localization data revealed a submetacentric pair carrying the U2 snDNA site among the populations/species analyzed. Furthermore, all studied species demonstrated homeology in the location of U4 snDNA cluster in the proximal region of metacentric pair 1, besides an additional signal showing up with a divergence in Apareiodon. Comparative chromosomal mapping of U4 snDNA also helped to reinforce the proposal of the ZZ/ZW1W2 sex chromosome system origin in an A. affinis population. According to cytogenetic data, the study corroborates the diversification in Parodontidae paired species with uncertain taxonomy.


Assuntos
Caraciformes , Feminino , Animais , Caraciformes/genética , Peixe-Zebra/genética , DNA/genética , Cromossomos Sexuais/genética , Mapeamento Cromossômico
4.
J Evol Biol ; 36(11): 1595-1608, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37885128

RESUMO

Hybridization could be considered part of the evolutionary history of many species. The hybridization among sea turtle species on the Brazilian coast is atypical and occurs where nesting areas and reproductive seasons overlap. Integrated analysis of morphology and genetics is still scarce, and there is no evidence of the parental chromosome set distribution in sea turtle interspecific hybrids. In this study, chromosome markers previously established for pure sea turtle species were combined with morphological and molecular analyses aiming to recognize genetic composition and chromosome sets in possible interspecific hybrids initially identified by mixed morphology. The data showed that one hybrid could be an F2 individual among Caretta caretta × Eretmochelys imbricata × Chelonia mydas, and another is resulting from backcross between C. caretta × Lepidochelys olivacea. Native alleles of different parental lineages were reported in the hybrids, and, despite this, it was verified that the hybrid chromosome sets were still balanced. Thus, how sea turtle hybridism can affect genetic features in the long term is a concern, as the implications of the crossing-over in hybrid chromosomal sets and the effects on genetic function are still unpredictable.


Assuntos
Tartarugas , Animais , Tartarugas/genética , Evolução Biológica , Reprodução , Cromossomos , Análise Citogenética
5.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37762461

RESUMO

Ancistrus is a highly diverse neotropical fish genus that exhibits extensive chromosomal variability, encompassing karyotypic morphology, diploid chromosome number (2n = 34-54), and the evolution of various types of sex chromosome systems. Robertsonian rearrangements related to unstable chromosomal sites are here described. Here, the karyotypes of two Ancistrus species were comparatively analyzed using classical cytogenetic techniques, in addition to isolation, cloning, sequencing, molecular characterization, and fluorescence in situ hybridization of repetitive sequences (i.e., 18S and 5S rDNA; U1, U2, and U5 snDNA; and telomere sequences). The species analyzed here have different karyotypes: Ancistrus sp. 1 (2n = 38, XX/XY) and Ancistrus cirrhosus (2n = 34, no heteromorphic sex chromosomes). Comparative mapping showed different organizations for the analyzed repetitive sequences: 18S and U1 sequences occurred in a single site in all populations of the analyzed species, while 5S and U2 sequences could occur in single or multiple sites. A sequencing analysis confirmed the identities of the U1, U2, and U5 snDNA sequences. Additionally, a syntenic condition for U2-U5 snDNA was found in Ancistrus. In a comparative analysis, the sequences of rDNA and U snDNA showed inter- and intraspecific chromosomal diversification. The occurrence of Robertsonian rearrangements and other dispersal mechanisms of repetitive sequences are discussed.


Assuntos
Peixes-Gato , Animais , Peixes-Gato/genética , Hibridização in Situ Fluorescente , Cariótipo , Cariotipagem , DNA Ribossômico/genética
6.
Sci Rep ; 13(1): 15756, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735233

RESUMO

The Neotropical monophyletic catfish genus Harttia represents an excellent model to study karyotype and sex chromosome evolution in teleosts. Its species split into three phylogenetic clades distributed along the Brazilian territory and they differ widely in karyotype traits, including the presence of standard or multiple sex chromosome systems in some members. Here, we investigate the chromosomal rearrangements and associated synteny blocks involved in the origin of a multiple X1X2Y sex chromosome system present in three out of six sampled Amazonian-clade species. Using 5S and 18S ribosomal DNA fluorescence in situ hybridization and whole chromosome painting with probes corresponding to X1 and X2 chromosomes of X1X2Y system from H. punctata, we confirm previous assumptions that X1X2Y sex chromosome systems of H. punctata, H. duriventris and H. villasboas represent the same linkage groups which also form the putative XY sex chromosomes of H. rondoni. The shared homeology between X1X2Y sex chromosomes suggests they might have originated once in the common ancestor of these closely related species. A joint arrangement of mapped H. punctata X1 and X2 sex chromosomes in early diverging species of different Harttia clades suggests that the X1X2Y sex chromosome system may have formed through an X chromosome fission rather than previously proposed Y-autosome fusion.


Assuntos
Peixes-Gato , Animais , Peixes-Gato/genética , Hibridização in Situ Fluorescente , Filogenia , Cromossomos Sexuais/genética , Cromossomo Y
7.
Front Genet ; 14: 1226222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576550

RESUMO

The remarkable fish biodiversity encompasses also great sex chromosome variability. Harttia catfish belong to Neotropical models for karyotype and sex chromosome research. Some species possess one of the three male-heterogametic sex chromosome systems, XY, X1X2Y or XY1Y2, while other members of the genus have yet uncharacterized modes of sex determination. Particularly the XY1Y2 multiple sex chromosome system shows a relatively low incidence among vertebrates, and it has not been yet thoroughly investigated. Previous research suggested two independent X-autosome fusions in Harttia which led to the emergence of XY1Y2 sex chromosome system in three of its species. In this study, we investigated evolutionary trajectories of synteny blocks involved in this XY1Y2 system by probing six Harttia species with whole chromosome painting (WCP) probes derived from the X (HCA-X) and the chromosome 9 (HCA-9) of H. carvalhoi. We found that both painting probes hybridize to two distinct chromosome pairs in Amazonian species, whereas the HCA-9 probe paints three chromosome pairs in H. guianensis, endemic to Guyanese drainages. These findings demonstrate distinct evolutionary fates of mapped synteny blocks and thereby elevated karyotype dynamics in Harttia among the three evolutionary clades.

8.
Genet Mol Biol ; 45(4): e20220203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36622243

RESUMO

Boana comprises a diverse genus of Neotropical treefrogs, currently rearranged into seven taxonomic species groups. Although cytogenetic studies have demonstrated diversity in its representatives, the chromosomal mapping of repetitive DNA sequences is still scarce. In this study, Boana albopunctata, Boana faber, and Boana prasina were subjected to in situ localization of different repetitive DNA units to evaluate trends of chromosomal evolution in this genus. Boana faber and B. prasina had 2n=24 chromosomes, while B. albopunctata has 2n=22 and an intra-individual variation related to the presence/absence of one B chromosome. The location of 45S rDNA sites was different in the analyzed karyotypes, corroborating with what was found in the distinct phylogenetic groups of Boana. We presented the first description of 5S rDNA in a Boana species, which showed markings resulting from transposition/translocation mechanisms. In situ localization of microsatellite loci proved to be a helpful marker for karyotype comparison in Boana, commonly with cis accumulation in the heterochromatin. On the other hand, genomic dispersion of microsatellites may be associated with hitchhiking effects during the spreading of transposable elements. The obtained results corroborated the independent diversification of these lineages of species from three distinct phylogenetic groups of Boana.

9.
Genet Mol Biol ; 45(3 Suppl 1): e20220071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36394537

RESUMO

Telomere has a central role in chromosomal stability events. Chromosome ends organized in telomere-loop prevent activation of DNA damage response (DDR) mechanisms, thus keeping the chromosome structure organized. On the other hand, free chromosome ends, dysfunctional telomeres, and interstitial telomeric sequences (ITS) can trigger chromosome rearrangements. Here, the telomere organization, function, and maintenance mechanisms, in addition to ITS types and their involvement in chromosome changes, were revisited. Despite a general (TTAGGG)n sequence being present in vertebrate telomeres, insects show more diversification of their telomere motif. The relation between ITS and chromosome rearrangements was observed in insects and vertebrates, demonstrating different types of genome organization and distribution. Some ITS cannot be considered relicts of chromosome rearrangements because probable they were inserted during a double-strand break repair mechanism. On the other hand, the involvement of telomere sequences participating or triggering chromosome rearrangements or organizing satellite DNA components in several species groups is evident. The genomic assembling advances and applying other methodologies over ITS, and their flanking regions, can help to understand the telomere participation in the chromosomal evolution in species groups with highly diversified karyotypes.

10.
Zebrafish ; 19(5): 200-209, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36099209

RESUMO

Ancistrus presents a wide karyotypic diversity, resulting from numeric and structural chromosomal rearrangements. It has been proposed that some genome-specific regions containing repetitive units could organize prone-to-break DNA sites in Loricariidae, triggering chromosomal rearrangements such as Robertsonian fusions (Rb fusions), centric fissions, translocations, and inversions. The tandemly repeats of the small nuclear RNAs (snRNAs) gene families are considered good cytogenetic markers for understanding chromosomal remodeling events among closely related species, but these snRNAs have been scarcely analyzed in Ancistrus. This study presented the nucleotide sequencing and comparative in situ location of U snRNA sequences from Ancistrus aguaboensis, Ancistrus cf. multispinis, and Ancistrus sp. (2n = 50, 52, and 50, respectively), aiming to provide information about snRNA clusters in the genome and chromosome evolution in Ancistrus. U snRNA nucleotide sequences of Ancistrus presented identity to orthologous copies and folded their secondary structures correctly. In situ localization and karyotyping of the three Ancistrus species revealed clustered copies of U2 and U5 snRNA gene families to a single chromosome site, one chromosome pair bearing U1 snRNA sequence, and one main locus of U4 snRNA sequence, besides scattered signals along the chromosomes. Previous studies related the participation of the rRNA gene families in centric fusion events, contributing to chromosome rearrangements and karyotype plasticity present in Loricariidae. In this study, homeologies in U snRNA loci chromosomal locations were detected, indicating the occurrence of conserved sites of these gene families in these three Ancistrus species with 2n = 50 or 52 chromosomes.


Assuntos
Peixes-Gato , Animais , Peixes-Gato/genética , Peixe-Zebra/genética , Cariótipo , Cariotipagem , RNA Nuclear Pequeno/genética , Análise de Sequência , Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA