Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
One Health ; 19: 100853, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39071487

RESUMO

Bats are important reservoirs and spreaders of pathogens. Giardia duodenalis is a globally important protozoan that infects humans and other mammals with considerable public health burden, particularly on the child development. Based on genetic variation and host specificity, G. duodenalis is categorized into eight genotypes/assemblages A-H. Assemblages A and B are widespread globally and are associated with human and animal disease. There is evidence of Giardia in the bat feces from diverse geographic regions, but the G. duodenalis assemblages are unknown, which is a key point for the One Health view. Here, we successfully amplified the BG/GDH/DIS3/HCMP2/HCMP3 targets of G. duodenalis from five bat species captured in the Brazilian Amazon biome revealing the presence of zoonotic G. duodenalis assemblages A and B in the feces of these flying mammals. Our study reveals that bats may play a role in transmission of zoonotic G. duodenalis, at least in this biome.

3.
Mem Inst Oswaldo Cruz ; 118: e230081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909500

RESUMO

BACKGROUND: Pandrug-resistant (PDR) Klebsiella pneumoniae has been reported sporadically in many countries and remains rare in Brazil. OBJECTIVES: This study unravelled the genetic determinants involved with the PDR background of a clinical ST11 K. pneumoniae recovered in the Brazilian Amazon Region, where K. pneumoniae genomic and epidemiological information is scarce. METHODS: Kp196 was submitted to the antimicrobial susceptibility test by the disk-diffusion method and minimum inhibitory concentration (MIC) determination. The whole genome sequencing was obtained and the sequence type was determined by core genome multilocus sequence typing (cgMLST). Its intrinsic and acquired resistome was assessed by Comprehensive Antibiotic Resistance Database (CARD) and comparison with wild-type genes. FINDINGS: The analyses revealed that Kp196 belonged to the pandemic ST11 and presented the PDR phenotype. Its acquired resistome was composed of a huge set of clinically relevant resistance determinants, including bla CTX-M-15 and bla NDM-1, all found in the vicinity of mobile platforms. Considering its intrinsic resistome, the multidrug resistance, especially to colistin, tigecycline and fluoroquinolones, was multifactorial and attributed to modifications (indels, missense mutations, and gene disruption) in several housekeeping genes (arnT/phoQ/mgrB/ramR/acrB/gyrA/parC/ompK35-36-37). The Kp196 intrinsic resistome was also observed in a ST11 environmental strain, although harbouring distinct acquired resistomes. CONCLUSIONS: An accumulation of different resistance mechanisms regarding the intrinsic resistome accounts for a more stable resistome, strongly contributing to the Kp196 PDR phenotype.


Assuntos
Antibacterianos , Infecções por Klebsiella , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Klebsiella pneumoniae/genética , Brasil , beta-Lactamases/genética , Tipagem de Sequências Multilocus , Testes de Sensibilidade Microbiana
4.
Mem Inst Oswaldo Cruz ; 118: e230088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37971095

RESUMO

BACKGROUND: The parasite Giardia duodenalis infects a wide range of vertebrate hosts, including domestic and wild animals as well as humans. Giardia is genotyped into eight assemblages (A-H). Zoonotic assemblages A and B have already been identified in humans and wild and domestic animals (non-human primates and cats) from Brazilian Amazon and in the world. Due to its zoonotic/zooanthroponotic nature, surveillance initiatives and the definition of Giardia assemblages are important in order to characterise the epidemiological scenario and to implement further control measures. OBJECTIVES: Determine assemblages of G. duodenalis in sloths from the Brazilian Amazon Region. METHODS: Faecal parasitological examination of sloths from Amazonas State. Polymerase chain reaction (PCR) targeting the beta giardin (BG), and genes from multilocus sequence typing (MLST) scheme, amplicon sequencing and phylogenetic analysis. FINDINGS: Here, we identified, by microscopy, Giardia in two northern sloths (Bradypus tridactylus). These two samples were submitted to molecular assays and it was revealed that both were infected by G. duodenalis assemblage A. Phylogenetic analysis showed that they belong to assemblage A within sequences from humans and wild and domestic animals. CONCLUSION: Therefore, besides showing, by the first time, the current presence of this parasite in sloths, our findings reveals that this wild animal species would be part of the zoonotic/zooanthroponotic scenario of this parasite in the Brazilian Amazon.


Assuntos
Giardia lamblia , Giardíase , Bichos-Preguiça , Animais , Humanos , Gatos , Giardia lamblia/genética , Bichos-Preguiça/genética , Tipagem de Sequências Multilocus , Filogenia , Brasil/epidemiologia , Fezes/parasitologia , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/diagnóstico , Zoonoses , Giardia/genética , Genótipo , Animais Domésticos , Animais Selvagens , Prevalência
5.
J Infect Public Health ; 16(10): 1690-1695, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37639945

RESUMO

BACKGROUND: Acinetobacter baumannii international clone II (IC2) is a widespread pandemic clone, however, it is rarely described in South America. The present study reported an outbreak caused by XDR IC2 strains in a clinical setting in Rio de Janeiro in 2022. METHODS: Molecular epidemiology analysis was conducted with MLST to determine the clonal relationship and to assign a sequence type. The antimicrobial resistance profile of A. baumannii strains was assessed by the disk-diffusion method and MIC determination, and the presence of antibiotic resistance genes was determined by PCR and Sanger sequencing. The whole genome of one representative strain (AB91) was sequenced to prospect its resistome and virulome. RESULTS: The MLST revealed that all strains belonged to the ST2 (Pasteur scheme) that corresponded to the pandemic IC2 lineage. They presented the XDR phenotype, which was compatible with their resistome composed of several acquired resistance genes and altered housekeeping genes. Additionally, an expressive virulome was revealed in AB91 genome. Genomic comparison with the unique other available IC2 genome from Brazil revealed that outbreaks occurring during (São Paulo - 2020/2021) and after (Rio de Janeiro - 2022) COVID-19 pandemics were caused by the same IC2 lineage. CONCLUSIONS: This study suggests that the presence of a huge arsenal of resistance and virulence genes may have contributed to the persistence and the successful establishment of IC2 in Brazilian clinical settings during and after the COVID-19 pandemics in response to a series of events, such as the antibiotic overused during that period.


Assuntos
Acinetobacter baumannii , COVID-19 , Humanos , Brasil/epidemiologia , Acinetobacter baumannii/genética , Proteína 1 Semelhante a Receptor de Interleucina-1 , Tipagem de Sequências Multilocus , COVID-19/epidemiologia , Surtos de Doenças , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia
6.
Mem. Inst. Oswaldo Cruz ; 118: e230088, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1521240

RESUMO

BACKGROUND The parasite Giardia duodenalis infects a wide range of vertebrate hosts, including domestic and wild animals as well as humans. Giardia is genotyped into eight assemblages (A-H). Zoonotic assemblages A and B have already been identified in humans and wild and domestic animals (non-human primates and cats) from Brazilian Amazon and in the world. Due to its zoonotic/zooanthroponotic nature, surveillance initiatives and the definition of Giardia assemblages are important in order to characterise the epidemiological scenario and to implement further control measures. OBJECTIVES Determine assemblages of G. duodenalis in sloths from the Brazilian Amazon Region. METHODS Faecal parasitological examination of sloths from Amazonas State. Polymerase chain reaction (PCR) targeting the beta giardin (BG), and genes from multilocus sequence typing (MLST) scheme, amplicon sequencing and phylogenetic analysis. FINDINGS Here, we identified, by microscopy, Giardia in two northern sloths (Bradypus tridactylus). These two samples were submitted to molecular assays and it was revealed that both were infected by G. duodenalis assemblage A. Phylogenetic analysis showed that they belong to assemblage A within sequences from humans and wild and domestic animals. CONCLUSION Therefore, besides showing, by the first time, the current presence of this parasite in sloths, our findings reveals that this wild animal species would be part of the zoonotic/zooanthroponotic scenario of this parasite in the Brazilian Amazon.

7.
Mem. Inst. Oswaldo Cruz ; 118: e230081, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1521243

RESUMO

BACKGROUND Pandrug-resistant (PDR) Klebsiella pneumoniae has been reported sporadically in many countries and remains rare in Brazil. OBJECTIVES This study unravelled the genetic determinants involved with the PDR background of a clinical ST11 K. pneumoniae recovered in the Brazilian Amazon Region, where K. pneumoniae genomic and epidemiological information is scarce. METHODS Kp196 was submitted to the antimicrobial susceptibility test by the disk-diffusion method and minimum inhibitory concentration (MIC) determination. The whole genome sequencing was obtained and the sequence type was determined by core genome multilocus sequence typing (cgMLST). Its intrinsic and acquired resistome was assessed by Comprehensive Antibiotic Resistance Database (CARD) and comparison with wild-type genes. FINDINGS The analyses revealed that Kp196 belonged to the pandemic ST11 and presented the PDR phenotype. Its acquired resistome was composed of a huge set of clinically relevant resistance determinants, including bla CTX-M-15 and bla NDM-1, all found in the vicinity of mobile platforms. Considering its intrinsic resistome, the multidrug resistance, especially to colistin, tigecycline and fluoroquinolones, was multifactorial and attributed to modifications (indels, missense mutations, and gene disruption) in several housekeeping genes (arnT/phoQ/mgrB/ramR/acrB/gyrA/parC/ompK35-36-37). The Kp196 intrinsic resistome was also observed in a ST11 environmental strain, although harbouring distinct acquired resistomes. CONCLUSIONS An accumulation of different resistance mechanisms regarding the intrinsic resistome accounts for a more stable resistome, strongly contributing to the Kp196 PDR phenotype.

8.
Acta amaz ; 53(2): 130-140, 2023. graf
Artigo em Inglês | VETINDEX | ID: biblio-1428931

RESUMO

The primates that inhabit the rainforest surrounding the city of Manaus (Amazonas, Brazil) have long been recognised as potentially important reservoirs of emerging and re-emerging infectious diseases (ERIDs). PCR amplification of filarial sequences from wild-caught Simulium oyapockense has been used to incriminate potentially important Amazon-region ERID bridge vectors by showing they had previously fed on non-human primates. The broader use of filarial parasite sequences for the incrimination of biting insects as potentially important zoonotic disease vectors is limited by a paucity of primate-derived filarial parasite reference sequences which can be matched to the PCR amplified sequences obtained from insect-vector vectors. Here we have used shotgun sequencing to obtain reference data from an adult Dipetalonema gracile parasite which was found infecting a wild pied tamarin (Saguinus bicolor) in a peripheral region of Manaus. We report the parasite´s complete mitochondrial genome (which is 13,647 base pairs in length), 894,846 base pairs of its Wolbachia genome and 6,426 base pairs of its ribosomal DNA locus (spanning from the start of its 18S subunit to the end of its 28S subunit). Despite being critically endangered, S. bicolor is commonly encountered around the periphery of Manaus and in urban forest fragments. The reported sequences may be a useful reference tool for identifying ERID bridge vectors and potentially provide some insights into the amount and the nature of contact between primate pathogen reservoirs and the residents of Manaus.(AU)


Os primatas que habitam a floresta tropical ao redor da cidade de Manaus (Amazonas, Brasil) há muito são reconhecidos como reservatórios potencialmente importantes de doenças infecciosas emergentes e reemergentes. Sequências de DNA de parasitas filariais detectadas por PCR em amostras de Simulium oyapockense foram usadas para demonstrar que eles haviam se alimentado anteriormente de primatas não humanos e, dessa maneira, incriminar vetores-ponte da região amazônica. O uso mais amplo de detecção de parasitas filariais para a incriminação de vetores-ponte é limitado por uma escassez de sequências referência de parasitas filarias obtidas de hospedeiros. Aqui nós usamos o sequenciamento tipo shotgun para obter dados de referência de um parasita adulto Dipetalonema gracile encontrado infectando um sauim-de-coleira, Saguinus bicolor no entorno de Manaus. Relatamos o genoma mitocondrial completo do parasita (que tem 13.647 pares de bases de comprimento), 894.846 pares de bases de seu genoma de Wolbachia e 6.426 pares de bases de seu locus de DNA ribossômico (desde o início de sua subunidade 18S até o final de sua subunidade 28S). Apesar de criticamente ameaçado, S. bicolor é comumente encontrado no entorno de Manaus e em fragmentos florestais urbanos. As sequências relatadas podem ser uma ferramenta de referência útil para identificar vetores ponte e potencialmente fornecer algumas informações sobre o contato entre reservatórios de patógenos de primatas e os moradores de Manaus.(AU)


Assuntos
Animais , Saguinus/parasitologia , Dipetalonema/genética , Proteínas Ribossômicas , Brasil , Filariose , Ribossomos Mitocondriais
9.
Front Immunol ; 13: 949516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052089

RESUMO

Human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is an inflammatory neurodegenerative disease that affects motor, urinary, intestinal, and sensory functions. Typically, HAM/TSP is slowly progressive, but it may vary from limited motor disability after decades (very slow progression) to loss of motor function in a few years from disease onset (rapid). In this study, we aimed to identify prognostic biomarkers for HAM/TSP to support patient management. Thus, proteomic analysis of the cerebrospinal fluid (CSF) was performed with samples from HTLV-1 asymptomatic carriers (AC) (n=13) and HAM/TSP patients (n=21) with rapid, typical, and very slow progression using quantitative label-free liquid chromatography/tandem mass spectrometry. Enrichment analyses were also carried out to identify key biological processes associated with distinct neurological conditions in HTLV-1 infection. Candidate biomarkers were validated by ELISA in paired CSF and serum samples, and samples from HTLV-1-seronegative individuals (n=9) were used as controls. CSF analysis identified 602 proteins. Leukocyte/cell activation, immune response processes and neurodegeneration pathways were enriched in rapid progressors. Conversely, HTLV-1 AC and HAM/TSP patients with typical and very slow progression had enriched processes for nervous system development. Differential expression analysis showed that soluble vascular cell adhesion molecule 1 (sVCAM-1), chitotriosidase 1 (CHIT1), and cathepsin C (CTSC) were upregulated in HAM/TSP. However, only CHIT1 was significantly elevated after validation, particularly in HAM/TSP rapid progressors. In contrast, none of these biomarkers were altered in serum. Additionally, CSF CHIT1 levels in HAM/TSP patients positively correlated with the speed of HAM/TSP progression, defined as points in the IPEC-2 HAM/TSP disability scale per year of disease, and with CSF levels of phosphorylated neurofilament heavy chain, neopterin, CXCL5, CXCL10, and CXCL11. In conclusion, higher CSF levels of CHIT1 were associated with HAM/TSP rapid progression and correlated with other biomarkers of neuroinflammation and neurodegeneration. Therefore, we propose CHIT1 as an additional or alternative CSF biomarker to identify HAM/TSP patients with a worse prognosis.


Assuntos
Pessoas com Deficiência , Vírus Linfotrópico T Tipo 1 Humano , Transtornos Motores , Doenças Neurodegenerativas , Paraparesia Espástica Tropical , Biomarcadores , Hexosaminidases , Humanos , Paraparesia Espástica Tropical/diagnóstico , Proteômica
10.
Sci Rep ; 12(1): 12102, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840779

RESUMO

The plasmids in gut microbiomes have the potential to contribute to the microbiome community, as well as human health and physiology. Nevertheless, this niche remains poorly explored. In general, most microbiome studies focus on urban-industrialized groups, but here, we studied semi-isolated groups from South America and Africa, which would represent a link between ancestral and modern human groups. Based on open metagenomic data, we characterized the set of plasmids, including their genes and functions, from the gut microbiome of the Hadza, Matses, Tunapuco, and Yanomami, semi-isolated groups with a hunter, gather or subsistence lifestyle. Unique plasmid clusters and gene functions for each human group were identified. Moreover, a dozen plasmid clusters circulating in other niches worldwide are shared by these distinct groups. In addition, novel and unique plasmids harboring resistance (encompassing six antibiotic classes and multiple metals) and virulence (as type VI secretion systems) genes were identified. Functional analysis revealed pathways commonly associated with urban-industrialized groups, such as lipopolysaccharide biosynthesis that was characterized in the Hadza gut plasmids. These results demonstrate the richness of plasmids in semi-isolated human groups' gut microbiome, which represents an important source of information with biotechnological/pharmaceutical potential, but also on the spread of resistance/virulence genes to semi-isolated groups.


Assuntos
Microbioma Gastrointestinal , Microbioma Gastrointestinal/genética , Humanos , Metagenoma , Metagenômica , Plasmídeos/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA