Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 11(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34357033

RESUMO

Hydrogen cyanide, HCN, is considered a fundamental molecule in chemical evolution. The named HCN polymers have been suggested as precursors of important bioorganics. Some novel researches have focused on the role of mineral surfaces in the hydrolysis and/or polymerization of cyanide species, but until now, their role has been unclear. Understanding the role of minerals in chemical evolution processes is crucial because minerals undoubtedly interacted with the organic molecules formed on the early Earth by different process. Therefore, we simulated the probable interactions between HCN and a serpentinite-hosted alkaline hydrothermal system. We studied the effect of serpentinite during the thermolysis of HCN at basic conditions (i.e., HCN 0.15 M, 50 h, 100 °C, pH > 10). The HCN-derived thermal polymer and supernatant formed after treatment were analyzed by several complementary analytical techniques. The results obtained suggest that: (I) the mineral surfaces can act as mediators in the mechanisms of organic molecule production such as the polymerization of HCN; (II) the thermal and physicochemical properties of the HCN polymer produced are affected by the presence of the mineral surface; and (III) serpentinite seems to inhibit the formation of bioorganic molecules compared with the control (without mineral).

2.
Astrobiology ; 20(1): 26-38, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31549853

RESUMO

Most adsorption and radiolysis experiments related to prebiotic chemistry studies are performed in distilled water or sodium chloride solutions. However, distilled water and sodium chloride solutions do not represent the composition of the primitive seas of Earth. In this work, an artificial seawater with ion abundances Mg2+ > Ca2+ >> Na+ ≈ K+ and SO42- >> Cl- was used, one that is different from the average composition of seawater today. This artificial seawater is named seawater 4.0 Ga, since it better represents the composition of the major constituents of seawater of primitive Earth. The radiolysis of adenine adsorbed onto montmorillonite was studied. The most important result is that adenine is adsorbed onto montmorillonite, when it is dissolved in artificial seawater 4.0 Ga, and the clay protects adenine against gamma radiation decomposition. However, desorption of adenine from montmorillonite was possible only with 0.10 mol L-1 of KOH. This result indicates that adenine was strongly bonded to montmorillonite. Fourier transform infrared spectroscopy showed that NH2 group and electrostatic interactions, between negatively charged montmorillonite and positively charged adenine, are responsible for adsorption of adenine onto montmorillonite. In addition, X-ray diffractograms showed that adenine enters in the interlayer space of montmorillonite.


Assuntos
Adenina/química , Bentonita/química , Radiação Ionizante , Adsorção , Liofilização , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
Heliyon ; 5(5): e01584, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31193064

RESUMO

Solids of adenine obtained from distilled water and seawater lyophilized solutions were γ irradiated at a 94.52 kGy dose. Results indicate that pure solid adenine had a low degradation rate, likewise the solid containing seawater salts. However, EPR spectroscopy analysis suggests a high interaction of the radiation with seawater salts, by radical formation in sulfate ions. These outcomes are of interest for prebiotic chemistry, since ions could have played important roles in chemical evolution. In addition, Martian soil is rich in sulphate salts, thus these salts could protected organic molecules being degraded by γ-radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA