Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(4): 1840-1852, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38232297

RESUMO

The design of rare-earth-doped upconversion/downshifting nanoparticles (NPs) for theoretical use in nanomedicine has garnered considerable interest. Previous research has emphasized luminescent nanothermometry and photothermal therapy, while three-dimensional (3D) near-infrared (NIR) luminescent tracers have received less attention. Our study introduces Nd3+-, Yb3+-, and Ho3+-doped NaYF4 core-shell luminescent NPs as potential multiparametric nanothermometers and NIR imaging tracers. Nd3+ sensitizes at 804 nm, while Yb3+ bridges to activators Ho3+. We evaluated the photoluminescence properties of Nd3+-, Yb3+-, and Ho3+-doped core and core-shell NPs synthesized via polyol-mediated and thermal decomposition methods. The NaYF4:NdYbHo(7/15/3%)@NaYF4:Nd(15%) core-shell NPs demonstrate competitive nanothermometry capabilities. Specifically, the polyol-synthesized sample exhibits a sensitivity of 0.27% K-1 at 313 K (40 °C), whereas the thermally decomposed synthesized sample shows a significantly higher sensitivity of 0.55% K-1 at 313 K (40 °C) in the near-infrared range. Control samples indicate back energy transfer processes from both Yb and Ho to Nd, while Yb to Ho energy transfer enhances Ho3+-driven upconversion transitions in green and red wavelengths, suggesting promise for photodynamic therapy. Fluorescence molecular tomography confirms 3D NIR fluorescence nanoparticle localization in a biological media after injection, highlighting the potential of core-shell NPs as NIR luminescent tracers. The strategy's clinical impact lies in photothermal treatment planning, leveraging core-shell NPs for (pre)clinical applications, and enabling the easy addition of new functionalities through distinct ion doping.

2.
Pharmaceutics ; 13(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34575541

RESUMO

Controlling populations of free-roaming dogs and cats poses a huge challenge worldwide. Non-surgical neutering strategies for male animals have been long pursued, but the implementation of the procedures developed has remained limited to date. As submitting the testes to high temperatures impairs spermatogenesis, the present study investigated localized application of magnetic nanoparticle hyperthermia (MNH) to the testicles as a potential non-surgical sterilization method for animals. An intratesticular injection of a magnetic fluid composed of manganese-ferrite nanoparticles functionalized with citrate was administered followed by testicle exposure to an alternate magnetic field to generate localized heat. Testicular MNH was highly effective, causing progressive seminiferous tubule degeneration followed by substitution of the parenchyma with stromal tissue and gonadal atrophy, suggesting an irreversible process with few side effects to general animal health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA