Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 23(4): 392-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21596550

RESUMO

Several studies have revealed that physiological concentrations of biotin are required for the normal expression of critical carbohydrate metabolism genes and for glucose homeostasis. However, the different experimental models used in these studies make it difficult to integrate the effects of biotin deficiency on glucose metabolism. To further investigate the effects of biotin deficiency on glucose metabolism, we presently analyzed the effect of biotin deprivation on glucose homeostasis and on pancreatic islet morphology. Three-week-old male BALB/cAnN Hsd mice were fed a biotin-deficient or a biotin-control diet (0 or 7.2 µmol of free biotin/kg diet, respectively) over a period of 8 weeks. We found that biotin deprivation caused reduced concentrations of blood glucose and serum insulin concentrations, but increased plasma glucagon levels. Biotin-deficient mice also presented impaired glucose and insulin tolerance tests, indicating defects in insulin sensitivity. Altered insulin signaling was linked to a decrease in phosphorylated Akt/PKB but induced no change in insulin receptor abundance. Islet morphology studies revealed disruption of islet architecture due to biotin deficiency, and an increase in the number of α-cells in the islet core. Morphometric analyses found increased islet size, number of islets and glucagon-positive area, but a decreased insulin-positive area, in the biotin-deficient group. Glucagon secretion and gene expression increased in islets isolated from biotin-deficient mice. Our results suggest that biotin deficiency promotes hyperglycemic mechanisms such as increased glucagon concentration and decreased insulin secretion and sensitivity to compensate for reduced blood glucose concentrations. Variations in glucose homeostasis may participate in the changes observed in pancreatic islets.


Assuntos
Biotina/deficiência , Glicemia/metabolismo , Homeostase , Resistência à Insulina/fisiologia , Ilhotas Pancreáticas/anatomia & histologia , Animais , Peso Corporal , Glucagon/sangue , Glucagon/metabolismo , Teste de Tolerância a Glucose , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C
2.
Eur J Pharmacol ; 644(1-3): 263-8, 2010 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-20655901

RESUMO

Besides its role as a carboxylase prosthetic group, biotin regulates gene expression and has a wide repertoire of effects on systemic processes. Several studies have shown that pharmacological concentrations of biotin reduce hypertriglyceridemia. The molecular mechanisms by which pharmacological concentrations of biotin affect lipid metabolism are largely unknown. The present study analyzed the effects of pharmacological doses of biotin on triglyceridemia, insulin sensitivity and on mRNA expression of various lipogenic genes. Three-week-old male BALB/cAnN Hsd mice were fed a biotin-control or a biotin-supplemented diet (1.76 or 97.7mg of free biotin/kg diet, respectively) over a period of eight weeks. Serum triglyceride concentrations, insulin and glucose tolerance and mRNA abundance of various lipogenic genes were investigated. The biotin-supplemented group showed 35% less serum triglycerides than control mice. In the liver, we found a significant (P<0.05) reduction of mRNA levels of SREBP1-c, glucose transporter-2, phosphofructokinase-1, pyruvate kinase, acetyl-CoA carboxylase and fatty acid synthase, while glucose-6-phosphate dehydrogenase expression increased. No changes in glucokinase, stearoyl-CoA desaturase-1, FoxO1 or PPAR-gamma expression were observed. In adipose tissue, we found a decreased expression of SREBP1c, glucose-6-phosphate deshydrogenase, acetyl-CoA carboxylase, fatty acid synthase, stearoyl-CoA desaturase-1, phosphofructokinase-1 and PPAR-gamma, but no changes in FoxO1 expression. Moreover, the group fed a biotin-supplemented diet showed a significant decrease in adipose tissue weight. No differences in insulin sensitivity or serum insulin concentrations were observed between groups. Our results indicate that pharmacological concentrations of biotin decrease serum tryglyceride concentrations and lipogenic gene expression in liver and adipose tissues.


Assuntos
Biotina/farmacologia , Lipogênese/efeitos dos fármacos , Triglicerídeos/sangue , Complexo Vitamínico B/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Biotina/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Teste de Tolerância a Glucose , Insulina/sangue , Resistência à Insulina , Lipogênese/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/metabolismo , Complexo Vitamínico B/administração & dosagem
3.
Steroids ; 74(10-11): 863-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19540254

RESUMO

Biotin deficiency and biotin excess have both been found to affect reproduction and cause teratogenic effects. In the reproductive tract, however, the effects of biotin have not been well established yet. We investigated the effects of varying biotin content diets on the oestrus cycle, ovarian morphology, estradiol and progesterone serum levels, and the uterine mRNA abundance of their nuclear receptors, as well as on the activity of the estradiol-degrading group of enzymes cytochrome P450 (CYP) in the liver. Three-week-old female BALB/cAnN Hsd mice were fed a biotin-deficient, a biotin-control, or a biotin-supplemented diet (0, 7.2 or 400 micromol of free biotin/kg diet, respectively) over a period of nine weeks. Striking effects were observed in the biotin-deficient group: mice showed arrested estrous cycle on the day of diestrus and changes in ovary morphology. Estradiol serum concentration increased 49.2% in biotin-deficient mice compared to the control group, while the enzymatic activities of CYP1A2 and CYP2B2 increased (P<0.05). The mRNA abundance of nuclear estrogen and progesterone receptors decreased in the biotin-deficient mice. In the biotin-supplemented group we found that, in spite of a significant (P<0.05) decrease in the number of primary and Graafian follicles and in CYP1A2 activities, mice exhibited 105.4% higher serum estradiol concentration than the control group. No changes in the expression of the nuclear receptors were observed. No significant differences were observed in serum progesterone among the groups. Our results indicate that both the deficiency and the excess of biotin have significant effects on the female mouse reproductive system.


Assuntos
Biotina/deficiência , Biotina/farmacologia , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Animais , Biotina/administração & dosagem , Biotina/sangue , Peso Corporal/efeitos dos fármacos , Dieta , Estradiol/sangue , Ciclo Estral/efeitos dos fármacos , Feminino , Fígado/anatomia & histologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Tamanho do Órgão/efeitos dos fármacos , Ovário/anatomia & histologia , Ovário/efeitos dos fármacos , Progesterona/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estradiol/genética , Receptores de Progesterona/genética , Útero/efeitos dos fármacos , Útero/metabolismo
4.
J Endocrinol ; 190(2): 425-32, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16899575

RESUMO

The goal of this study was to evaluate gender-related differences of some metabolic determinants of insulin sensitivity and of susceptibility to the effects of diabetes. Changes in body weight, blood glucose, and serum insulin concentrations were compared between female and male Wistar rats in prepubertal, pubertal, and adult stages of life. A diabetic model was induced by streptozotocin (STZ) under nicotinamide protection in both sexes and metabolic patterns were evaluated during the next 4 weeks. Finally, the pancreases were processed for morphometric analysis. In the three age groups, at similar blood glucose levels, higher fasting serum insulin levels were found in female as compared with age matched male rats. After STZ treatment, female rats show lower insulin and higher glucose levels, and a worse survival rate as compared with male rats. The more severe disease phenotype observed in female animals is associated with a more dramatic perturbation of pancreatic islet morphology. Significant differences exist in insulin sensitivity between sexes, females being less sensitive to insulin than males at all age groups and more susceptible to the rapid development of a more severe form of diabetes than males.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Resistência à Insulina , Caracteres Sexuais , Animais , Biomarcadores/análise , Glicemia/análise , Composição Corporal , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/patologia , Suscetibilidade a Doenças , Feminino , Glucagon/análise , Teste de Tolerância a Glucose , Imuno-Histoquímica/métodos , Insulina/análise , Insulina/sangue , Ilhotas Pancreáticas/patologia , Masculino , Microscopia Confocal , Niacinamida , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA