Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biochem Pharmacol ; 217: 115841, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37820964

RESUMO

Ndel1 oligopeptidase activity shows promise as a potential biomarker for diagnosing schizophrenia (SCZ) and monitoring early-stage pharmacotherapy. Ndel1 plays a pivotal role in critical aspects of brain development, such as neurite outgrowth, neuronal migration, and embryonic brain formation, making it particularly relevant to neurodevelopmental disorders like SCZ. Currently, the most specific inhibitor for Ndel1 is the polyclonal anti-Ndel1 antibody (NOAb), known for its high specificity and efficient anti-catalytic activity. NOAb has been vital in measuring Ndel1 activity in humans and animal models, enabling the prediction of pharmacological responses to antipsychotics in studies with patients and animals. To advance our understanding of in vivo Ndel1 function and develop drugs for mental disorders, identifying small chemical compounds capable of specifically inhibiting Ndel1 oligopeptidase is crucial, including within living cells. Due to challenges in obtaining Ndel1's three-dimensional structure and its promiscuous substrate recognition, we conducted a high-throughput screening (HTS) of 2,400 small molecules. Nine compounds with IC50-values ranging from 7 to 56 µM were identified as potent Ndel1 inhibitors. Notably, one compound showed similar efficacy to NOAb and inhibited Ndel1 within living cells, although its in vivo use may pose toxicity concerns. Despite this, all identified compounds hold promise as candidates for further refinement through rational drug design, aiming to enhance their inhibitory efficacy, specificity, stability, and biodistribution. Our ultimate goal is to develop druggable Ndel1 inhibitors that can improve the treatment and support the diagnosis of psychiatric disorders like SCZ.


Assuntos
Anticorpos , Esquizofrenia , Animais , Humanos , Biomarcadores , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Ensaios de Triagem em Larga Escala , Esquizofrenia/diagnóstico , Esquizofrenia/terapia , Distribuição Tecidual , Anticorpos/farmacologia , Anticorpos/uso terapêutico
2.
Biochimie ; 214(Pt B): 96-101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37364769

RESUMO

Arboviruses are a global concern for a multitude of reasons, including their increased incidence and human mortality. Vectors associated with arboviruses include the mosquito Aedes sp., which is responsible for transmitting the Zika virus. Flaviviruses, like the Zika virus, present only one chymotrypsin-like serine protease (NS3) in their genome. Together with host enzymes, the NS2B co-factor NS3 protease complex are essential for the viral replication cycle by virus polyprotein processing. To search for Zika virus NS2B-NS3 protease (ZIKVPro) inhibitors, a phage display library was constructed using the Boophilin domain 1 (BoophD1), a thrombin inhibitor from the Kunitz family. A BoophilinD1 library mutated at positions P1-P4' was constructed, presenting a titer of 2.9x106 (cfu), and screened utilizing purified ZIKVPro. The results demonstrated at the P1-P4' positions the occurrence of 47% RALHA sequence (mut 12) and 11.8% RASWA sequence (mut14), SMRPT, or KALIP (wt) sequence. BoophD1-wt and mutants 12 and 14 were expressed and purified. The purified BoophD1 wt, mut 12 and 14, presented Ki values for ZIKVPro of 0.103, 0.116, and 0.101 µM, respectively. The BoophD1 mutant inhibitors inhibit the Dengue virus 2 protease (DENV2) with Ki values of 0.298, 0.271, and 0.379 µM, respectively. In conclusion, BoophD1 mut 12 and 14 selected for ZIKVPro demonstrated inhibitory activity like BoophD1-wt, suggesting that these are the strongest Zika inhibitors present in the BoophD1 mutated phage display library. Furthermore, BoophD1 mutants selected for ZIKVPro inhibit both Zika and Dengue 2 proteases making them potential pan-flavivirus inhibitors.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Animais , Humanos , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/genética , Mosquitos Vetores , Serina Endopeptidases/genética , Inibidores Enzimáticos , Antivirais/farmacologia , Peptídeo Hidrolases
3.
J Mol Model ; 29(5): 132, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37036538

RESUMO

Discerning the determinants of protein thermostability is very important both from the theoretical and applied perspective. Different lines of evidence seem to indicate that a dynamical network of salt bridges/charged residues plays a fundamental role in the thermostability of enzymes. In this work, we applied measures of dynamic variance, like the Gini coefficients, Kullback-Leibler (KL) divergence and dynamic cross correlation (DCC) coefficients to compare the behavior of 3 pairs of homologous proteins from the thermophilic bacterium Thermus thermophilus and mesophilic Escherichia coli. Molecular dynamic (MD) simulations of these proteins were performed at 303 K and 363 K. In the characterization of their side chain rotamer distributions, the corresponding Gini coefficients and KL-divergence both revealed significant correlations with temperature. Similarly, a DCC analysis revealed a higher trend to de-correlate the movement of charged residues at higher temperatures in the thermophilic proteins, when compared with their mesophilic homologues. These results highlight the importance of dynamic electrostatic network interactions for the thermostability of enzymes.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Proteínas/química , Temperatura , Thermus thermophilus/metabolismo , Temperatura Alta , Escherichia coli/metabolismo
4.
Peptides ; 154: 170814, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644302

RESUMO

The main protease Mpro of SARS-CoV-2 is a well-studied major drug target. Additionally, it has been linked to this virus' pathogenicity, possibly through off-target effects. It is also an interesting diagnostic target. To obtain more data on possible substrates as well as to assess the enzyme's primary specificity a two-step approach was introduced. First, Terminal Amine Isobaric Labeling of Substrates (TAILS) was employed to identify novel Mpro cleavage sites in a mouse lung proteome library. In a second step, using a structural homology model, the MM/PBSA variant MM/GBSA (Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area) free binding energy calculations were carried out to determine relevant interacting amino acids. As a result, 58 unique cleavage sites were detected, including six that displayed glutamine at the P1 position. Furthermore, modeling results indicated that Mpro has a far higher potential promiscuity towards substrates than expected. The combination of proteomics and MM/PBSA modeling analysis can thus be useful for elucidating the specificity of Mpro, and thus open novel perspectives for the development of future peptidomimetic drugs against COVID-19, as well as diagnostic tools.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Proteases 3C de Coronavírus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Inibidores de Proteases , Proteômica
5.
ChemMedChem ; 17(8): e202100695, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35104396

RESUMO

As the Zika virus protease is an essential and well-established target for the development of antiviral agents, we biochemically screened for inhibitors using a purified recombinantly expressed form of this enzyme. As a result, we were able to identify 10 new Zika virus protease inhibitors. These compounds are natural products and showed strong inhibition in the biochemical assays. Inhibitory constants values for the compounds ranged from 5 nM to 8 µM. Among the most potent inhibitors are flavonoids like irigenol hexa-acetate (Ki =0.28 µM), katacine (Ki =0.26 µM), theaflavin gallate (Ki =0.40 µM) and hematein (Ki =0.33 µM). Inhibitors from other groups of natural products include sennoside A (Ki =0.19 µM) and gossypol (Ki =0.70 µM). Several of the obtained compounds are known for their beneficial health effects and have acceptable pharmacokinetic characteristics. Thus, they could be of interest as lead compounds for the development of important and essential Zika antiviral drugs.


Assuntos
Produtos Biológicos , Infecção por Zika virus , Zika virus , Antivirais/química , Produtos Biológicos/química , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Proteínas não Estruturais Virais , Inibidores de Protease Viral , Infecção por Zika virus/tratamento farmacológico
6.
Peptides, v. 154, 170814, ago. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4377

RESUMO

The main protease Mpro of SARS-CoV-2 is a well-studied major drug target. Additionally, it has been linked to this virus’ pathogenicity, possibly through off-target effects. It is also an interesting diagnostic target. To obtain more data on possible substrates as well as to assess the enzyme’s primary specificity a two-step approach was introduced. First, Terminal Amine Isobaric Labeling of Substrates (TAILS) was employed to identify novel Mpro cleavage sites in a mouse lung proteome library. In a second step, using a structural homology model, the MM/PBSA variant MM/GBSA (Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area) free binding energy calculations were carried out to determine relevant interacting amino acids. As a result, 58 unique cleavage sites were detected, including six that displayed glutamine at the P1 position. Furthermore, modeling results indicated that Mpro has a far higher potential promiscuity towards substrates than expected. The combination of proteomics and MM/PBSA modeling analysis can thus be useful for elucidating the specificity of Mpro, and thus open novel perspectives for the development of future peptidomimetic drugs against COVID-19, as well as diagnostic tools.

7.
Biochim Biophys Acta Gen Subj ; 1865(7): 129895, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33781823

RESUMO

BACKGROUND: Understanding the determinants of protein thermostability is very important both from the theoretical and applied perspective. One emerging view in thermostable enzymes seems to indicate that a salt bridge/charged residue network plays a fundamental role in their thermostability. METHODS: The structure of alkaline phosphatase (AP) from Thermus thermophilus HB8 was solved by X-ray crystallography at 2.1 Å resolution. The obtained structure was further analyzed by molecular dynamics studies at different temperatures (303 K, 333 K and 363 K) and compared to homologous proteins from the cold-adapted organisms Shewanella sp. and Vibrio strain G15-21. To analyze differences in measures of dynamic variation, several data reduction techniques like principal component analysis (PCA), residue interaction network (RIN) analysis and rotamer analysis were used. Using hierarchical clustering, the obtained results were combined to determine residues showing high degree dynamical variations due to temperature jumps. Furthermore, dynamic cross correlation (DCC) analysis was carried out to characterize networks of charged residues. RESULTS: Top clustered residues showed a higher propensity for thermostabilizing mutations, indicating evolutionary pressure acting on thermophilic organisms. The description of rotamer distributions by Gini coefficients and Kullback-Leibler (KL) divergence both revealed significant correlations with temperature. DCC analysis revealed a significant trend to de-correlation of the movement of charged residues at higher temperatures. SIGNIFICANCE: The de-correlation of charged residues detected in Thermus thermophilus AP, highlights the importance of dynamic electrostatic network interactions for the thermostability of this enzyme.


Assuntos
Fosfatase Alcalina/química , Temperatura Alta , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Estabilidade Enzimática , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica , Homologia de Sequência
8.
PLoS One ; 15(10): e0240079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33022015

RESUMO

The Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) pandemic represents a global challenge. SARS-CoV-2's ability to replicate in host cells relies on the action of its non-structural proteins, like its main protease (Mpro). This cysteine protease acts by processing the viruses' precursor polyproteins. As proteases, together with polymerases, are main targets of antiviral drug design, we here have performed biochemical high throughput screening (HTS) with recombinantly expressed SARS-CoV-2 Mpro. A fluorescent assay was used to identify inhibitors in a compound library containing known drugs, bioactive molecules and natural products. These screens led to the identification of 13 inhibitors with IC50 values ranging from 0.2 µM to 23 µM. The screens confirmed several known SARS-CoV Mpro inhibitors as inhibitors of SARS-CoV-2 Mpro, such as the organo-mercuric compounds thimerosal and phenylmercuric acetate. Benzophenone derivatives could also be identified among the most potent screening hits. Additionally, Evans blue, a sulfonic acid-containing dye, could be identified as an Mpro inhibitor. The obtained compounds could be of interest as lead compounds for the development of future SARS-CoV-2 drugs.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , Infecções por Coronavirus/virologia , Avaliação Pré-Clínica de Medicamentos/métodos , Pneumonia Viral/virologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , COVID-19 , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Desenho de Fármacos , Escherichia coli/genética , Concentração Inibidora 50 , Modelos Moleculares , Pandemias , SARS-CoV-2 , Proteínas não Estruturais Virais/química
9.
PLoS One ; 15(5): e0232959, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32401802

RESUMO

The elucidation of mechanisms behind the thermostability of proteins is extremely important both from the theoretical and applied perspective. Here we report the crystal structure of methylenetetrahydrofolate dehydrogenase (MTHFD) from Thermus thermophilus HB8, a thermophilic model organism. Molecular dynamics trajectory analysis of this protein at different temperatures (303 K, 333 K and 363 K) was compared with homologous proteins from the less temperature resistant organism Thermoplasma acidophilum and the mesophilic organism Acinetobacter baumannii using several data reduction techniques like principal component analysis (PCA), residue interaction network (RIN) analysis and rotamer analysis. These methods enabled the determination of important residues for the thermostability of this enzyme. The description of rotamer distributions by Gini coefficients and Kullback-Leibler (KL) divergence both revealed significant correlations with temperature. The emerging view seems to indicate that a static salt bridge/charged residue network plays a fundamental role in the temperature resistance of Thermus thermophilus MTHFD by enhancing both electrostatic interactions and entropic energy dispersion. Furthermore, this analysis uncovered a relationship between residue mutations and evolutionary pressure acting on thermophilic organisms and thus could be of use for the design of future thermostable enzymes.


Assuntos
Clonagem Molecular/métodos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/química , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Thermus thermophilus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Estabilidade Enzimática , Modelos Moleculares , Simulação de Dinâmica Molecular , Análise de Componente Principal , Estrutura Secundária de Proteína , Termodinâmica , Thermus thermophilus/genética
10.
FEBS J ; 283(4): 694-703, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26663887

RESUMO

UNLABELLED: The clusters of regularly interspaced short palindromic repeats (CRISPR) and the Cas (CRISPR-associated) proteins form an adaptive immune system in bacteria and archaea that evolved as an RNA-guided interference mechanism to target and degrade foreign genetic elements. In the so-called type IIIA CRISPR-Cas systems, Cas proteins from the Csm family form a complex of RNPs that are involved in surveillance and targeting tasks. In the present study, we report the crystal structure of Thermotoga maritima Csm2. This protein is considered to assemble into the helically shaped Csm RNP complex in a site opposite to the CRISPR RNA binding backbone. Csm2 was solved via cadmium single wavelength anomalous diffraction phasing at 2.4 Å resolution. The structure reveals that Csm2 is composed of a large 42 amino-acid long α-helix flanked by three shorter α-helices. The structure also shows that the protein is capable of forming dimers mainly via an extensive contact surface conferred by its long α-helix. This interaction is further stabilized by the N-terminal helix, which is inserted into the C-terminal helical portion of the adjacent subunit. The dimerization of Csm2 was additionally confirmed by size exclusion chromatography of the pure recombinant protein followed by MS analysis of the eluted fractions. Because of its role in the assembly and functioning of the Csm CRISPR RNP complex, the crystal structure of Csm2 is of great importance for clarifying the mechanism of action of the subtype IIIA CRISPR-Cas system, as well as the similarities and diversities between the different CRISPR-Cas system. DATABASE: The structure of Thermotoga maritima Csm2 has been deposited in the Protein Data Bank under accession code 5AN6.


Assuntos
Proteínas Associadas a CRISPR/química , Thermotoga maritima/química , Sequência de Aminoácidos , Proteínas Associadas a CRISPR/genética , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , RNA Mensageiro/química , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA