Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microb Ecol ; 80(2): 249-265, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32060621

RESUMO

Turfs are among the major benthic components of reef systems worldwide. The nearly complete genome sequences, basic physiological characteristics, and phylogenomic reconstruction of two phycobiliprotein-rich filamentous cyanobacteria strains isolated from turf assemblages from the Abrolhos Bank (Brazil) are investigated. Both Adonisia turfae CCMR0081T (= CBAS 745T) and CCMR0082 contain approximately 8 Mbp in genome size and experiments identified that both strains exhibit chromatic acclimation. Whereas CCMR0081T exhibits chromatic acclimation type 3 (CA3) regulating both phycocyanin (PC) and phycoerythrin (PE), CCMR0082 strain exhibits chromatic acclimation type 2 (CA2), in correspondence with genes encoding specific photosensors and regulators for PC and PE. Furthermore, a high number and diversity of secondary metabolite synthesis gene clusters were identified in both genomes, and they were able to grow at high temperatures (28 °C, with scant growth at 30 °C). These characteristics provide insights into their widespread distribution in reef systems.


Assuntos
Cianobactérias/fisiologia , Genoma Bacteriano/fisiologia , Oceano Atlântico , Brasil , Recifes de Corais , Cianobactérias/genética , Filogenia
2.
Curr Microbiol ; 77(1): 154-157, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31620811

RESUMO

We report here the novel species to encompass the isolate A649T (=CBAS 716T = CBRVS P1061T) obtained from viscera of the healthy pufferfish Sphoeroides spengleri (Family Tetraodontidae). Genomic taxonomy analysis demonstrates that the novel strain A649T had < 95% average amino acid identity/average nucleotide identity (AAI/ANI) and < 70% similarity of genome-to-genome distance (GGDH) towards its closest neighbors which places A649T into a new Enterovibrio species (Enterovibrio baiacu sp nov.). In silico phenotyping disclosed several features that may be used to differentiate related Enterovibrio species. The nearly complete genome assembly of strain A649T consisted of 5.4 Mbp and 4826 coding genes.


Assuntos
Tetraodontiformes/microbiologia , Vibrionaceae/genética , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genoma Bacteriano/genética , Filogenia , Análise de Sequência de DNA , Vibrionaceae/classificação
4.
Artigo em Inglês | MEDLINE | ID: mdl-30533792

RESUMO

We report here the genome sequences of the novel isolates G62T and G98T from rhodoliths. The nearly complete genomes consisted of 4.7 Mbp (4,233 coding sequences [CDS]) for G62T and 4.5 Mbp (4,085 CDS) for G98T. Genomic taxonomy places these new genomes into 2 new species.

5.
Genome Announc ; 6(22)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29853503

RESUMO

We report the whole-genome sequence of Muricauda sp. strain K001 isolated from a marine cyanobacterial culture. This genome sequence will improve our understanding of the influence of heterotrophic bacteria on the physiology of cyanobacteria and may contribute to the development of new natural products.

6.
Front Microbiol ; 9: 176, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541063

RESUMO

Harmful cyanobacterial blooms have become increasingly common in freshwater ecosystems in recent decades, mainly due to eutrophication and climate change. Water becomes unreliable for human consumption. Here, we report a comprehensive study carried out to investigate the water quality of several Campina Grande reservoirs. Our approach included metagenomics, microbial abundance quantification, ELISA test for three cyanotoxins (microcystin, nodularins, and cylindrospermopsin), and in vivo ecotoxicological tests with zebrafish embryos. Cytometry analysis showed high cyanobacterial abundance, while metagenomics identified an average of 10.6% of cyanobacterial sequences, and demonstrated the presence of Microcystis, Cylindrospermopsis, and toxin coding genes in all ponds. Zebrafish embryos reared with pond water had high mortality and diverse malformations. Among the ponds analyzed, Araçagi showed the highest lethality (an average of 62.9 ± 0.8%), followed by Boqueirão (lethality average of 62.5 ± 0.8%). Here, we demonstrate that water from ponds undergoing extremely drought conditions have an abundance of potentially harmful cyanobacteria and their toxins. Our findings are consistent with a scenario in which polluted drinking water poses a great risk to human health.

7.
Front Microbiol, v. 9, 176, fev. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2418

RESUMO

Harmful cyanobacterial blooms have become increasingly common in freshwater ecosystems in recent decades, mainly due to eutrophication and climate change. Water becomes unreliable for human consumption. Here, we report a comprehensive study carried out to investigate the water quality of several Campina Grande reservoirs. Our approach included metagenomics, microbial abundance quantification, ELISA test for three cyanotoxins (microcystin, nodularins, and cylindrospermopsin), and in vivo ecotoxicological tests with zebrafish embryos. Cytometry analysis showed high cyanobacterial abundance, while metagenomics identified an average of 10.6% of cyanobacterial sequences, and demonstrated the presence of Microcystis, Cylindrospermopsis, and toxin coding genes in all ponds. Zebrafish embryos reared with pond water had high mortality and diverse malformations. Among the ponds analyzed, Aracagi showed the highest lethality (an average of 62.9 +/- 0.8%), followed by Boqueirao (lethality average of 62.5 +/- 0.8%). Here, we demonstrate that water from ponds undergoing extremely drought conditions have an abundance of potentially harmful cyanobacteria and their toxins. Our findings are consistent with a scenario in which polluted drinking water poses a great risk to human health.

8.
Front Microbiol ; 8: 2132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184540

RESUMO

Cyanobacteria are major contributors to global biogeochemical cycles. The genetic diversity among Cyanobacteria enables them to thrive across many habitats, although only a few studies have analyzed the association of phylogenomic clades to specific environmental niches. In this study, we adopted an ecogenomics strategy with the aim to delineate ecological niche preferences of Cyanobacteria and integrate them to the genomic taxonomy of these bacteria. First, an appropriate phylogenomic framework was established using a set of genomic taxonomy signatures (including a tree based on conserved gene sequences, genome-to-genome distance, and average amino acid identity) to analyse ninety-nine publicly available cyanobacterial genomes. Next, the relative abundances of these genomes were determined throughout diverse global marine and freshwater ecosystems, using metagenomic data sets. The whole-genome-based taxonomy of the ninety-nine genomes allowed us to identify 57 (of which 28 are new genera) and 87 (of which 32 are new species) different cyanobacterial genera and species, respectively. The ecogenomic analysis allowed the distinction of three major ecological groups of Cyanobacteria (named as i. Low Temperature; ii. Low Temperature Copiotroph; and iii. High Temperature Oligotroph) that were coherently linked to the genomic taxonomy. This work establishes a new taxonomic framework for Cyanobacteria in the light of genomic taxonomy and ecogenomic approaches.

9.
FEMS Microbiol Rev ; 41(4): 575-595, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28486655

RESUMO

Coral reefs are one of the most productive ecosystems on the planet, with primary production rates compared to that of rain forests. Benthic organisms release 10-50% of their gross organic production as mucus that stimulates heterotrophic microbial metabolism in the water column. As a result, coral reef microbes grow up to 50 times faster than open ocean communities. Anthropogenic disturbances cause once coral-dominated reefs to become dominated by fleshy organisms, with several outcomes for trophic relationships. Here we review microbial processes implicated in organic carbon flux in coral reefs displaying species phase shifts. The first section presents microbial players and interactions within the coral holobiont that contribute to reef carbon flow. In the second section, we identify four ecosystem-level microbial features that directly respond to benthic species phase shifts: community composition, biomass, metabolism and viral predation. The third section discusses the significance of microbial consumption of benthic organic matter to reef trophic relationships. In the fourth section, we propose that the 'microbial phase shifts' discussed here are conducive to lower resilience, facilitating the transition to new degradation states in coral reefs.


Assuntos
Carbono/metabolismo , Recifes de Corais , Microbiota/fisiologia , Microbiologia da Água , Biodiversidade , Ecossistema , Muco/microbiologia
10.
PLoS One ; 11(8): e0161168, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27548380

RESUMO

Turfs are widespread assemblages (consisting of microbes and algae) that inhabit reef systems. They are the most abundant benthic component in the Abrolhos reef system (Brazil), representing greater than half the coverage of the entire benthic community. Their presence is associated with a reduction in three-dimensional coral reef complexity and decreases the habitats available for reef biodiversity. Despite their importance, the taxonomic and functional diversity of turfs remain unclear. We performed a metagenomics and pigments profile characterization of turfs from the Abrolhos reefs. Turf microbiome primarily encompassed Proteobacteria (mean 40.57% ± s.d. 10.36, N = 1.548,192), Cyanobacteria (mean 35.04% ± s.d. 15.5, N = 1.337,196), and Bacteroidetes (mean 11.12% ± s.d. 4.25, N = 424,185). Oxygenic and anoxygenic phototrophs, chemolithotrophs, and aerobic anoxygenic phototrophic (AANP) bacteria showed a conserved functional trait of the turf microbiomes. Genes associated with oxygenic photosynthesis, AANP, sulfur cycle (S oxidation, and DMSP consumption), and nitrogen metabolism (N2 fixation, ammonia assimilation, dissimilatory nitrate and nitrite ammonification) were found in the turf microbiomes. Principal component analyses of the most abundant taxa and functions showed that turf microbiomes differ from the other major Abrolhos benthic microbiomes (i.e., corals and rhodoliths) and seawater. Taken together, these features suggest that turfs have a homogeneous functional core across the Abrolhos Bank, which holds diverse microbial guilds when comparing with other benthic organisms.


Assuntos
Cianobactérias/genética , DNA Bacteriano/genética , Metagenômica , Microbiota/genética , Filogenia , Proteobactérias/genética , Amônia/metabolismo , Animais , Antozoários/fisiologia , Bacteroidetes , Biodiversidade , Brasil , Recifes de Corais , Cianobactérias/classificação , Cianobactérias/metabolismo , Código de Barras de DNA Taxonômico , Consórcios Microbianos/genética , Nitrogênio/metabolismo , Fotossíntese , Pigmentos Biológicos/biossíntese , Análise de Componente Principal , Proteobactérias/classificação , Proteobactérias/metabolismo , Água do Mar/microbiologia , Compostos de Sulfônio/metabolismo , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA