Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 174: 334-343, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849653

RESUMO

Ulva ohnoi is a green macroalga with fast growth and high rates of nitrogen and phosphorus absorption. Recently, this species has been recorded in several places with record green tide formation in some of them. Using molecular tools, we herein report the first occurrence of this species in Brazil and demonstrate its potential for phytoremediation in typical environmental concentrations of Cd (0.625-15 µg L-1). Similarly, the effects of physicochemical parameters (salinity and temperature) on the toxicity and uptake efficiency of this species were evaluated. Molecular analysis of two sequences (1141 bp) obtained corroborates another 34 sequences for U. ohnoi obtained from GenBank. The addition of Cd in the medium affected photosynthetic parameters and reduced growth rate. U. ohnoi showed resistance to Cd when cultivated at 18 °C, S15 and 18-25 °C, S35, at concentrations between 0.625 and 2.5 µg. L-1 of Cd; yet, positive growth rate was maintained. Dose-dependent accumulation was observed in all combinations of factors used with a maximum value of 4.20 µg Cd per gram of dry seaweed at 15 µg. L-1 of Cd at 18 °C and S35. Maximum value of the concentration factor was 81.3 ±â€¯1.1% of Cd added at the concentration of 0.625 µg. L-1 to S15 and 18 °C. Our results demonstrate the potential of using U. ohnoi in the phytoremediation of Cd in saltwater or brackish water.


Assuntos
Cádmio/toxicidade , Alga Marinha/efeitos dos fármacos , Ulva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Biodegradação Ambiental , Brasil , Cádmio/metabolismo , Relação Dose-Resposta a Droga , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotossíntese/efeitos dos fármacos , Salinidade , Alga Marinha/metabolismo , Temperatura , Ulva/metabolismo , Poluentes Químicos da Água/metabolismo
2.
Talanta ; 188: 722-728, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029438

RESUMO

Soils around coal-fired thermal power plants based on coal combustion can present high concentrations of arsenic. This fact has a direct effect on the food chain. Arsenic can be absorbed by plants and vegetables through the soil, which will then serve as food for different animals, spreading the contamination. A method has been developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) for direct determination of arsenic in solid soil samples. Different chemical modifiers were tested to suppress the matrix effects observed. Among them, the modifier that showed the best results was the Zr, used as a permanent modifier. The optimized pyrolysis and atomization temperatures were 1000 °C and 2200 °C, respectively. A calibration curve was established using aqueous standard solutions which was linear up to 16 ng of arsenic. The characteristic mass and limit of detection were 22 pg and 73 pg As, respectively. The accuracy of the method was verified using two certified reference materials and comparison with results obtained for samples after microwave-assisted digestion. Eleven soil samples were collected around the power plant Complex Jorge Lacerda-Tractebel Suezin, in the south of Santa Catarina, Brazil. The concentration of As ranged from 3.4 mg kg-1 to 9.7 mg kg-1, which is within the limits allowed by Brazilian legislation.

3.
Talanta ; 176: 178-186, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917739

RESUMO

The chemical composition of complex inorganic materials, such as copper concentrate, may influence the economics of their further processing because most smelters, and particularly the producers of high-purity electrolyte copper, have strict limitations for the permissible concentration of impurities. These components might be harmful to the quality of the products, impair the production process and be hazardous to the environment. The goal of the present work is the development of a method for the determination of fluorine in copper concentrate using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis. The molecular absorption of the diatomic molecule CaF was measured at 606.440nm. The molecule CaF was generated by the addition of 200µg Ca as the molecule-forming reagent; the optimized pyrolysis and vaporization temperatures were 900°C and 2400°C, respectively. The characteristic mass and limit of detection were 0.5ng and 3ng, respectively. Calibration curves were established using aqueous standard solutions containing the major components Cu, Fe, S and the minor component Ag in optimized concentrations. The accuracy of the method was verified using certified reference materials. Fourteen copper concentrate samples from Chile and Australia were analyzed to confirm the applicability of the method to real samples; the concentration of fluorine ranged from 34 to 5676mgkg-1. The samples were also analyzed independently at Analytik Jena by different operators, using the same equipment, but different target molecules, InF and GaF, and different operating conditions; but with a few exceptions, the results agreed quite well. The results obtained at Analytik Jena using the GaF molecule and our results obtained with CaF, with one exception, were also in agreement with the values informed by the supplier of the samples, which were obtained using ion selective electrode potentiometry after alkaline fusion. A comparison will also be made for the three target molecules and the three independently developed methods for the determination of fluorine, although all three methods used direct solid sample analysis.

4.
Talanta ; 150: 142-7, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26838392

RESUMO

High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method.


Assuntos
Arsênio/análise , Óleos de Peixe/química , Grafite/química , Espectrofotometria Atômica/métodos , Poluentes Químicos da Água/análise , Arsênio/química , Calibragem , Contaminação de Alimentos/análise , Indústrias , Espectrometria de Massas , Temperatura , Poluentes Químicos da Água/química
5.
Talanta ; 146: 166-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26695248

RESUMO

A method has been developed for the determination of lead in biomass, bio-oil, pyrolysis aqueous phase, and biomass ashes by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) and direct solid or liquid sample analysis. All measurements were performed without chemical modifier and calibration could be carried out using aqueous standard solutions. A pyrolysis temperature of 800°C and an atomization temperature of 2200°C were applied. The limits of detection and quantification were, respectively, 0.5 µg kg(-1) and 2 µg kg(-1) using the analytical line at 217.001 nm and 6 µg kg(-1) and 19 µg kg(-1) at 283.306 nm. The precision, expressed as relative standard deviation, was between 3% and 10%, which is suitable for direct analysis. The lead concentrations found for the solid samples varied between 0.28 and 1.4 mg kg(-1) for biomass and between 0.25 and 2.3 mg kg(-1) for ashes, these values were much higher than those found for bio-oil (2.2-16.8 µg kg(-1)) and pyrolysis aqueous phase (3.2-18.5 µg kg(-1)). After the determination of lead in the samples, it was possible to estimate the relative distribution of this element in the fractions of the pyrolysis products, and it was observed that most of the lead present in the biomass was eliminated to the environment during the pyrolysis process, with a significant portion retained in the ashes.


Assuntos
Biomassa , Grafite/química , Chumbo/análise , Espectrofotometria Atômica/métodos , Reprodutibilidade dos Testes , Temperatura , Fatores de Tempo , Água/química
6.
Talanta ; 146: 203-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26695253

RESUMO

An analytical method for the determination of sulfur, as the tin mono-sulfide (SnS) molecule, in crude oil using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The molecular absorbance of the SnS has been measured using the wavelength at 271.624 nm and the crude oil samples were prepared as micro-emulsions due to their high viscosity. Several chemical modifiers (Ir, Pd, Ru, Zr) were tested and palladium was chosen, because it exhibited the best performance. The heating program was optimized by comparing the pyrolysis and vaporization curves obtained for an aqueous sulfur standard and a micro-emulsion of a crude oil certified reference material (CRM). The optimum pyrolysis and vaporization temperatures were found to be 600 and 2000°C, respectively. The limit of detection and the characteristic mass using micro-emulsion analysis of crude oil samples were 5.8 and 13.3 ng S. Accuracy and precision of the method has been evaluated using two crude oil CRM (NIST 2721 and NIST 2722), showing good agreement with the informed or certified values.

7.
Anal Chim Acta ; 852: 82-7, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25441883

RESUMO

A new method for the direct analysis of coal using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis was developed, aiming at the determination of Br and Cl. The procedure does not require any significant sample pretreatment and allows simultaneous determination of both elements to be carried out, requiring small mass aliquots of sample (about 0.5 mg). All operating parameters, including carrier gas flow-rate and RF power, were optimized for maximum sensitivity. The use of modifiers/aerosol carriers (Pd, Pd+Al and Pd+Ca) was evaluated, and the mixture of Pd and Ca was chosen, allowing pyrolysis and vaporization temperatures of 700°C and 1900°C, respectively. Chlorine was accurately determined using calibration against solid standards, whereas Br could also be determined using calibration against aqueous standard solutions. The limits of quantification were 0.03 µg g(-1) for Br and 7 µg g(-1) for Cl, and no spectral interferences were observed.


Assuntos
Bromo/análise , Cloro/análise , Carvão Mineral/análise , Espectrometria de Massas/métodos , Limite de Detecção , Temperatura , Volatilização
8.
Talanta ; 115: 55-60, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24054561

RESUMO

High-resolution continuum source graphite furnace atomic absorption spectrometry, because of the use of only one radiation source for all elements, offers the possibility of sequential determination of two or more elements from the same sample aliquot if their volatilities are significantly different. Cd and Cr were determined sequentially in samples of biomass and biomass ashes employing direct solid sample analysis. The use of a chemical modifier was found to be not necessary, and calibration could be carried out using aqueous standard solutions. A pyrolysis temperature of 400°C and an atomization temperature of 1500°C were used for the determination of Cd; no losses of Cr were observed at this temperature. After the atomization of Cd the wavelength was changed and Cr atomized at 2600°C. The limits of detection (LOD) and quantification (LOQ) were 1.1 µg kg(-1) and 3.7 µg kg(-1), respectively, for Cd and 21 µg kg(-1) and 70 µg kg(-1), respectively, for Cr using the most sensitive line at 357.869 nm, or 90 µg kg(-1) and 300 µg kg(-1), respectively, using the less sensitive line at 428.972 nm. The precision, expressed as relative standard deviation was around 10%, which is typical for direct solid sample analysis. The values found for Cd in biomass samples were between <1.1 µg kg(-1) and 789 µg kg(-1), whereas those for Cr were between 7.9 mg kg(-1) and 89 mg kg(-1); the values found in the ashes were significantly lower for Cd, between <1.1 µg kg(-1) and 6.3 µg kg(-1), whereas the trend was not so clear for Cr, where the values were between 3.4 mg kg(-1) and 28 mg kg(-1).


Assuntos
Cádmio/análise , Cromo/análise , Saccharum/química , Biomassa , Calibragem , Grafite , Temperatura Alta , Limite de Detecção , Espectrofotometria Atômica , Resíduos
9.
Talanta ; 106: 368-74, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23598139

RESUMO

An analytical method has been developed for the determination of sulfur in coal using direct solid sample analysis in a graphite tube furnace and high-resolution continuum source molecular absorption spectrometry (HR-CS GF MAS). The molecular absorbance of the carbon monosulfide molecule (CS), which is formed in the vaporization stage, has been measured using the rotational line at 258.033 nm. Several chemical modifiers were tested and Ru, applied as permanent modifier was chosen, because it exhibited the best performance. The optimum pyrolysis and vaporization temperatures were found to be 500 °C and 2200 °C, respectively. Aqueous standard solutions prepared from l-cysteine were used for calibration, as the linear regression obtained for this standard was not significantly different from that for a certified coal reference material (CRM) according to a Student t-test. The results obtained for sulfur in three coal CRM and six additional samples also showed no significant difference for the two calibration techniques according to the same statistical test. The sulfur concentration in the coal samples was found between 3.5 mg g(-1) and 33.7 mg g(-1) with a typical repeatability around 10%. The limit of detection for the direct analysis of solid coal samples was better than 0.1 µg S.

10.
Artigo em Inglês | MEDLINE | ID: mdl-23046152

RESUMO

A simple method has been developed to determine antimony and lead in pewter alloy cups produced in Brazil, using fast sequential determination by high-resolution continuum source flame atomic absorption spectrometry. The samples were dissolved in HCl and H(2)O(2), employing a cold finger system in order to avoid analyte losses. The main resonance line of lead at 217.001 nm and a secondary line of antimony at 212.739 nm were used. The limits of detection for lead and antimony were 0.02 and 5.7 mg L(-1), respectively. The trueness of the method was established by recovery tests and comparing the results obtained by the proposed method with those obtained by inductively coupled plasma optical emission spectrometry. The results were compared using a student's t-test and there was no significant difference at a 95% confidence interval. With the developed methods, it was possible to determine accurately antimony and lead in pewter samples. The lead concentration found in the analysed samples was around 1 mg g(-1), which means that they are not lead free; however, the content was below the maximum allowed level of 5 mg g(-1). The antimony content, which was found to be between 40 and 46 mg g(-1), is actually of greater concern, as antimony is known to be potentially toxic already at very low concentrations, although there is no legislation yet for this element.


Assuntos
Ligas/química , Antimônio/química , Embalagem de Alimentos , Chumbo/química , Espectrofotometria Atômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA